Abstract:Direct Preference Optimization (DPO) has emerged as a more computationally efficient alternative to Reinforcement Learning from Human Feedback (RLHF) with Proximal Policy Optimization (PPO), eliminating the need for reward models and online sampling. Despite these benefits, DPO and its variants remain sensitive to hyper-parameters and prone to instability, particularly on mathematical datasets. We argue that these issues arise from the unidirectional likelihood-derivative negative feedback inherent in the log-likelihood loss function. To address this, we propose a novel LLM alignment loss that establishes a stable Bidirectional Negative Feedback (BNF) during optimization. Our proposed BNF loss eliminates the need for pairwise contrastive losses and does not require any extra tunable hyper-parameters or pairwise preference data, streamlining the alignment pipeline to be as simple as supervised fine-tuning. We conduct extensive experiments across two challenging QA benchmarks and four reasoning benchmarks. The experimental results show that BNF achieves comparable performance to the best methods on QA benchmarks, while its performance decrease on the four reasoning benchmarks is significantly lower compared to the best methods, thus striking a better balance between value alignment and reasoning ability. In addition, we further validate the performance of BNF on non-pairwise datasets, and conduct in-depth analysis of log-likelihood and logit shifts across different preference optimization methods.
Abstract:This technical report presents the implementation of a state-of-the-art video encoder for video-text modal alignment and a video conversation framework called HiLight, which features dual visual towers. The work is divided into two main parts: 1.alignment of video and text modalities; 2.convenient and efficient way to interact with users. Our goal is to address the task of video comprehension in the context of billiards. The report includes a discussion of the concepts and the final solution developed during the task's implementation.
Abstract:Knowledge graphs have garnered significant research attention and are widely used to enhance downstream applications. However, most current studies mainly focus on static knowledge graphs, whose facts do not change with time, and disregard their dynamic evolution over time. As a result, temporal knowledge graphs have attracted more attention because a large amount of structured knowledge exists only within a specific period. Knowledge graph representation learning aims to learn low-dimensional vector embeddings for entities and relations in a knowledge graph. The representation learning of temporal knowledge graphs incorporates time information into the standard knowledge graph framework and can model the dynamics of entities and relations over time. In this paper, we conduct a comprehensive survey of temporal knowledge graph representation learning and its applications. We begin with an introduction to the definitions, datasets, and evaluation metrics for temporal knowledge graph representation learning. Next, we propose a taxonomy based on the core technologies of temporal knowledge graph representation learning methods, and provide an in-depth analysis of different methods in each category. Finally, we present various downstream applications related to the temporal knowledge graphs. In the end, we conclude the paper and have an outlook on the future research directions in this area.
Abstract:Temporal knowledge graph completion (TKGC) aims to fill in missing facts within a given temporal knowledge graph at a specific time. Existing methods, operating in real or complex spaces, have demonstrated promising performance in this task. This paper advances beyond conventional approaches by introducing more expressive quaternion representations for TKGC within hypercomplex space. Unlike existing quaternion-based methods, our study focuses on capturing time-sensitive relations rather than time-aware entities. Specifically, we model time-sensitive relations through time-aware rotation and periodic time translation, effectively capturing complex temporal variability. Furthermore, we theoretically demonstrate our method's capability to model symmetric, asymmetric, inverse, compositional, and evolutionary relation patterns. Comprehensive experiments on public datasets validate that our proposed approach achieves state-of-the-art performance in the field of TKGC.
Abstract:While Reinforcement Learning from Human Feedback (RLHF) significantly enhances the generation quality of Large Language Models (LLMs), recent studies have raised concerns regarding the complexity and instability associated with the Proximal Policy Optimization (PPO) algorithm, proposing a series of order-based calibration methods as viable alternatives. This paper delves further into current order-based methods, examining their inefficiencies in utilizing reward values and addressing misalignment issues. Building upon these findings, we propose a novel \textbf{V}alue-based \textbf{C}ali\textbf{B}ration (VCB) method to better align LLMs with human preferences. Experimental results demonstrate that VCB surpasses existing alignment methods on AI assistant and summarization datasets, providing impressive generalizability, robustness, and stability in diverse settings.
Abstract:The objective of Entity Alignment (EA) is to identify equivalent entity pairs from multiple Knowledge Graphs (KGs) and create a more comprehensive and unified KG. The majority of EA methods have primarily focused on the structural modality of KGs, lacking exploration of multi-modal information. A few multi-modal EA methods have made good attempts in this field. Still, they have two shortcomings: (1) inconsistent and inefficient modality modeling that designs complex and distinct models for each modality; (2) ineffective modality fusion due to the heterogeneous nature of modalities in EA. To tackle these challenges, we propose PathFusion, consisting of two main components: (1) MSP, a unified modeling approach that simplifies the alignment process by constructing paths connecting entities and modality nodes to represent multiple modalities; (2) IRF, an iterative fusion method that effectively combines information from different modalities using the path as an information carrier. Experimental results on real-world datasets demonstrate the superiority of PathFusion over state-of-the-art methods, with 22.4%-28.9% absolute improvement on Hits@1, and 0.194-0.245 absolute improvement on MRR.
Abstract:Entity alignment (EA) aims to find the equivalent entity pairs between different knowledge graphs (KGs), which is crucial to promote knowledge fusion. With the wide use of temporal knowledge graphs (TKGs), time-aware EA (TEA) methods appear to enhance EA. Existing TEA models are based on Graph Neural Networks (GNN) and achieve state-of-the-art (SOTA) performance, but it is difficult to transfer them to large-scale TKGs due to the scalability issue of GNN. In this paper, we propose an effective and efficient non-neural EA framework between TKGs, namely LightTEA, which consists of four essential components: (1) Two-aspect Three-view Label Propagation, (2) Sparse Similarity with Temporal Constraints, (3) Sinkhorn Operator, and (4) Temporal Iterative Learning. All of these modules work together to improve the performance of EA while reducing the time consumption of the model. Extensive experiments on public datasets indicate that our proposed model significantly outperforms the SOTA methods for EA between TKGs, and the time consumed by LightTEA is only dozens of seconds at most, no more than 10% of the most efficient TEA method.
Abstract:Entity Alignment (EA) aims to find equivalent entity pairs between KGs, which is the core step of bridging and integrating multi-source KGs. In this paper, we argue that existing GNN-based EA methods inherit the inborn defects from their neural network lineage: weak scalability and poor interpretability. Inspired by recent studies, we reinvent the Label Propagation algorithm to effectively run on KGs and propose a non-neural EA framework -- LightEA, consisting of three efficient components: (i) Random Orthogonal Label Generation, (ii) Three-view Label Propagation, and (iii) Sparse Sinkhorn Iteration. According to the extensive experiments on public datasets, LightEA has impressive scalability, robustness, and interpretability. With a mere tenth of time consumption, LightEA achieves comparable results to state-of-the-art methods across all datasets and even surpasses them on many.
Abstract:Entity alignment (EA) aims to find entities in different knowledge graphs (KGs) that refer to the same object in the real world. Recent studies incorporate temporal information to augment the representations of KGs. The existing methods for EA between temporal KGs (TKGs) utilize a time-aware attention mechanism to incorporate relational and temporal information into entity embeddings. The approaches outperform the previous methods by using temporal information. However, we believe that it is not necessary to learn the embeddings of temporal information in KGs since most TKGs have uniform temporal representations. Therefore, we propose a simple graph neural network (GNN) model combined with a temporal information matching mechanism, which achieves better performance with less time and fewer parameters. Furthermore, since alignment seeds are difficult to label in real-world applications, we also propose a method to generate unsupervised alignment seeds via the temporal information of TKG. Extensive experiments on public datasets indicate that our supervised method significantly outperforms the previous methods and the unsupervised one has competitive performance.
Abstract:Cross-lingual entity alignment (EA) aims to find the equivalent entities between crosslingual KGs, which is a crucial step for integrating KGs. Recently, many GNN-based EA methods are proposed and show decent performance improvements on several public datasets. Meanwhile, existing GNN-based EA methods inevitably inherit poor interpretability and low efficiency from neural networks. Motivated by the isomorphic assumption of GNNbased methods, we successfully transform the cross-lingual EA problem into the assignment problem. Based on this finding, we propose a frustratingly Simple but Effective Unsupervised entity alignment method (SEU) without neural networks. Extensive experiments show that our proposed unsupervised method even beats advanced supervised methods across all public datasets and has high efficiency, interpretability, and stability.