Abstract:Chain-of-Thought (CoT) prompting reveals that large language models are capable of performing complex reasoning via intermediate steps. CoT prompting is primarily categorized into three approaches. The first approach utilizes straightforward prompts like ``Let's think step by step'' to generate a sequential thought process before yielding an answer. The second approach makes use of human-crafted, step-by-step demonstrations to guide the model's reasoning process. The third automates the generation of reasoned demonstrations with the 'Let's think step by step'.This approach sometimes leads to reasoning errors, highlighting the need to diversify demonstrations to mitigate its misleading effects. However, diverse demonstrations pose challenges for effective representations. In this work, we propose ECHO, a self-harmonized chain-of-thought prompting method. It consolidates diverse solution paths into a uniform and effective solution pattern.ECHO demonstrates the best overall performance across three reasoning domains.
Abstract:The chain-of-though (CoT) prompting methods were successful in various natural language processing (NLP) tasks thanks to their ability to unveil the underlying complex reasoning processes. Such reasoning processes typically exhibit implicitly structured steps. Recent efforts also started investigating methods to encourage more explicitly structured reasoning procedures to be captured. In this work, we propose Tab-CoT, a novel tabular-format CoT prompting method, which allows the complex reasoning process to be explicitly modelled in a highly structured manner. Despite its simplicity, we show that our approach is capable of performing reasoning across multiple dimensions (i.e., both rows and columns). We demonstrate our approach's strong zero-shot and few-shot capabilities through extensive experiments on a range of reasoning tasks.
Abstract:We present a two-stage learning framework for weakly supervised object localization (WSOL). While most previous efforts rely on high-level feature based CAMs (Class Activation Maps), this paper proposes to localize objects using the low-level feature based activation maps. In the first stage, an activation map generator produces activation maps based on the low-level feature maps in the classifier, such that rich contextual object information is included in an online manner. In the second stage, we employ an evaluator to evaluate the activation maps predicted by the activation map generator. Based on this, we further propose a weighted entropy loss, an attentive erasing, and an area loss to drive the activation map generator to substantially reduce the uncertainty of activations between object and background, and explore less discriminative regions. Based on the low-level object information preserved in the first stage, the second stage model gradually generates a well-separated, complete, and compact activation map of object in the image, which can be easily thresholded for accurate localization. Extensive experiments on CUB-200-2011 and ImageNet-1K datasets show that our framework surpasses previous methods by a large margin, which sets a new state-of-the-art for WSOL.