Visa Research
Abstract:Large Language Models (LLMs) are becoming essential tools for various natural language processing tasks but often suffer from generating outdated or incorrect information. Retrieval-Augmented Generation (RAG) addresses this issue by incorporating external, real-time information retrieval to ground LLM responses. However, the existing RAG systems frequently struggle with the quality of retrieval documents, as irrelevant or noisy documents degrade performance, increase computational overhead, and undermine response reliability. To tackle this problem, we propose Multi-Agent Filtering Retrieval-Augmented Generation (MAIN-RAG), a training-free RAG framework that leverages multiple LLM agents to collaboratively filter and score retrieved documents. Specifically, MAIN-RAG introduces an adaptive filtering mechanism that dynamically adjusts the relevance filtering threshold based on score distributions, effectively minimizing noise while maintaining high recall of relevant documents. The proposed approach leverages inter-agent consensus to ensure robust document selection without requiring additional training data or fine-tuning. Experimental results across four QA benchmarks demonstrate that MAIN-RAG consistently outperforms traditional RAG approaches, achieving a 2-11% improvement in answer accuracy while reducing the number of irrelevant retrieved documents. Quantitative analysis further reveals that our approach achieves superior response consistency and answer accuracy over baseline methods, offering a competitive and practical alternative to training-based solutions.
Abstract:Graph is a prevalent discrete data structure, whose generation has wide applications such as drug discovery and circuit design. Diffusion generative models, as an emerging research focus, have been applied to graph generation tasks. Overall, according to the space of states and time steps, diffusion generative models can be categorized into discrete-/continuous-state discrete-/continuous-time fashions. In this paper, we formulate the graph diffusion generation in a discrete-state continuous-time setting, which has never been studied in previous graph diffusion models. The rationale of such a formulation is to preserve the discrete nature of graph-structured data and meanwhile provide flexible sampling trade-offs between sample quality and efficiency. Analysis shows that our training objective is closely related to generation quality, and our proposed generation framework enjoys ideal invariant/equivariant properties concerning the permutation of node ordering. Our proposed model shows competitive empirical performance against state-of-the-art graph generation solutions on various benchmarks and, at the same time, can flexibly trade off the generation quality and efficiency in the sampling phase.
Abstract:Most existing personalized federated learning approaches are based on intricate designs, which often require complex implementation and tuning. In order to address this limitation, we propose a simple yet effective personalized federated learning framework. Specifically, during each communication round, we group clients into multiple clusters based on their model training status and data distribution on the server side. We then consider each cluster center as a node equipped with model parameters and construct a graph that connects these nodes using weighted edges. Additionally, we update the model parameters at each node by propagating information across the entire graph. Subsequently, we design a precise personalized model distribution strategy to allow clients to obtain the most suitable model from the server side. We conduct experiments on three image benchmark datasets and create synthetic structured datasets with three types of typologies. Experimental results demonstrate the effectiveness of the proposed work.
Abstract:Contrastive Learning (CL) has shown promising performance in collaborative filtering. The key idea is to generate augmentation-invariant embeddings by maximizing the Mutual Information between different augmented views of the same instance. However, we empirically observe that existing CL models suffer from the \textsl{dimensional collapse} issue, where user/item embeddings only span a low-dimension subspace of the entire feature space. This suppresses other dimensional information and weakens the distinguishability of embeddings. Here we propose a non-contrastive learning objective, named nCL, which explicitly mitigates dimensional collapse of representations in collaborative filtering. Our nCL aims to achieve geometric properties of \textsl{Alignment} and \textsl{Compactness} on the embedding space. In particular, the alignment tries to push together representations of positive-related user-item pairs, while compactness tends to find the optimal coding length of user/item embeddings, subject to a given distortion. More importantly, our nCL does not require data augmentation nor negative sampling during training, making it scalable to large datasets. Experimental results demonstrate the superiority of our nCL.
Abstract:Rationale discovery is defined as finding a subset of the input data that maximally supports the prediction of downstream tasks. In graph machine learning context, graph rationale is defined to locate the critical subgraph in the given graph topology, which fundamentally determines the prediction results. In contrast to the rationale subgraph, the remaining subgraph is named the environment subgraph. Graph rationalization can enhance the model performance as the mapping between the graph rationale and prediction label is viewed as invariant, by assumption. To ensure the discriminative power of the extracted rationale subgraphs, a key technique named "intervention" is applied. The core idea of intervention is that given any changing environment subgraphs, the semantics from the rationale subgraph is invariant, which guarantees the correct prediction result. However, most, if not all, of the existing rationalization works on graph data develop their intervention strategies on the graph level, which is coarse-grained. In this paper, we propose well-tailored intervention strategies on graph data. Our idea is driven by the development of Transformer models, whose self-attention module provides rich interactions between input nodes. Based on the self-attention module, our proposed invariant graph Transformer (IGT) can achieve fine-grained, more specifically, node-level and virtual node-level intervention. Our comprehensive experiments involve 7 real-world datasets, and the proposed IGT shows significant performance advantages compared to 13 baseline methods.
Abstract:Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers. When working with large datasets, the imbalanced issue can be further exacerbated, making it exceptionally difficult to train classifiers effectively. To address the problem, over-sampling techniques have been developed to linearly interpolating data instances between minorities and their neighbors. However, in many real-world scenarios such as anomaly detection, minority instances are often dispersed diversely in the feature space rather than clustered together. Inspired by domain-agnostic data mix-up, we propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes. It is non-trivial to develop such a framework, the challenges include source sample selection, mix-up strategy selection, and the coordination between the underlying model and mix-up strategies. To tackle these challenges, we formulate the problem of iterative data mix-up as a Markov decision process (MDP) that maps data attributes onto an augmentation strategy. To solve the MDP, we employ an actor-critic framework to adapt the discrete-continuous decision space. This framework is utilized to train a data augmentation policy and design a reward signal that explores classifier uncertainty and encourages performance improvement, irrespective of the classifier's convergence. We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets using three different types of classifiers. The results of these experiments showcase the potential and promise of our framework in addressing imbalanced datasets with diverse minorities.
Abstract:Collaborative Filtering (CF) has been successfully used to help users discover the items of interest. Nevertheless, existing CF methods suffer from noisy data issue, which negatively impacts the quality of recommendation. To tackle this problem, many prior studies leverage adversarial learning to regularize the representations of users/items, which improves both generalizability and robustness. Those methods often learn adversarial perturbations and model parameters under min-max optimization framework. However, there still have two major drawbacks: 1) Existing methods lack theoretical guarantees of why adding perturbations improve the model generalizability and robustness; 2) Solving min-max optimization is time-consuming. In addition to updating the model parameters, each iteration requires additional computations to update the perturbations, making them not scalable for industry-scale datasets. In this paper, we present Sharpness-aware Collaborative Filtering (SharpCF), a simple yet effective method that conducts adversarial training without extra computational cost over the base optimizer. To achieve this goal, we first revisit the existing adversarial collaborative filtering and discuss its connection with recent Sharpness-aware Minimization. This analysis shows that adversarial training actually seeks model parameters that lie in neighborhoods around the optimal model parameters having uniformly low loss values, resulting in better generalizability. To reduce the computational overhead, SharpCF introduces a novel trajectory loss to measure the alignment between current weights and past weights. Experimental results on real-world datasets demonstrate that our SharpCF achieves superior performance with almost zero additional computational cost comparing to adversarial training.
Abstract:Graph Neural Networks (GNNs) have achieved impressive performance in collaborative filtering. However, GNNs tend to yield inferior performance when the distributions of training and test data are not aligned well. Also, training GNNs requires optimizing non-convex neural networks with an abundance of local and global minima, which may differ widely in their performance at test time. Thus, it is essential to choose the minima carefully. Here we propose an effective training schema, called {gSAM}, under the principle that the \textit{flatter} minima has a better generalization ability than the \textit{sharper} ones. To achieve this goal, gSAM regularizes the flatness of the weight loss landscape by forming a bi-level optimization: the outer problem conducts the standard model training while the inner problem helps the model jump out of the sharp minima. Experimental results show the superiority of our gSAM.
Abstract:The existence of adversarial attacks (or adversarial examples) brings huge concern about the machine learning (ML) model's safety issues. For many safety-critical ML tasks, such as financial forecasting, fraudulent detection, and anomaly detection, the data samples are usually mixed-type, which contain plenty of numerical and categorical features at the same time. However, how to generate adversarial examples with mixed-type data is still seldom studied. In this paper, we propose a novel attack algorithm M-Attack, which can effectively generate adversarial examples in mixed-type data. Based on M-Attack, attackers can attempt to mislead the targeted classification model's prediction, by only slightly perturbing both the numerical and categorical features in the given data samples. More importantly, by adding designed regularizations, our generated adversarial examples can evade potential detection models, which makes the attack indeed insidious. Through extensive empirical studies, we validate the effectiveness and efficiency of our attack method and evaluate the robustness of existing classification models against our proposed attack. The experimental results highlight the feasibility of generating adversarial examples toward machine learning models in real-world applications.
Abstract:The rapid proliferation of new users and items on the social web has aggravated the gray-sheep user/long-tail item challenge in recommender systems. Historically, cross-domain co-clustering methods have successfully leveraged shared users and items across dense and sparse domains to improve inference quality. However, they rely on shared rating data and cannot scale to multiple sparse target domains (i.e., the one-to-many transfer setting). This, combined with the increasing adoption of neural recommender architectures, motivates us to develop scalable neural layer-transfer approaches for cross-domain learning. Our key intuition is to guide neural collaborative filtering with domain-invariant components shared across the dense and sparse domains, improving the user and item representations learned in the sparse domains. We leverage contextual invariances across domains to develop these shared modules, and demonstrate that with user-item interaction context, we can learn-to-learn informative representation spaces even with sparse interaction data. We show the effectiveness and scalability of our approach on two public datasets and a massive transaction dataset from Visa, a global payments technology company (19% Item Recall, 3x faster vs. training separate models for each domain). Our approach is applicable to both implicit and explicit feedback settings.