Abstract:Deep neural networks are ubiquitously adopted in many applications, such as computer vision, natural language processing, and graph analytics. However, well-trained neural networks can make prediction errors after deployment as the world changes. \textit{Model editing} involves updating the base model to correct prediction errors with less accessible training data and computational resources. Despite recent advances in model editors in computer vision and natural language processing, editable training in graph neural networks (GNNs) is rarely explored. The challenge with editable GNN training lies in the inherent information aggregation across neighbors, which can lead model editors to affect the predictions of other nodes unintentionally. In this paper, we first observe the gradient of cross-entropy loss for the target node and training nodes with significant inconsistency, which indicates that directly fine-tuning the base model using the loss on the target node deteriorates the performance on training nodes. Motivated by the gradient inconsistency observation, we propose a simple yet effective \underline{G}radient \underline{R}ewiring method for \underline{E}ditable graph neural network training, named \textbf{GRE}. Specifically, we first store the anchor gradient of the loss on training nodes to preserve the locality. Subsequently, we rewire the gradient of the loss on the target node to preserve performance on the training node using anchor gradient. Experiments demonstrate the effectiveness of GRE on various model architectures and graph datasets in terms of multiple editing situations. The source code is available at \url{https://github.com/zhimengj0326/Gradient_rewiring_editing}
Abstract:Recommendation systems play a pivotal role in suggesting items to users based on their preferences. However, in online platforms, these systems inevitably offer unsuitable recommendations due to limited model capacity, poor data quality, or evolving user interests. Enhancing user experience necessitates efficiently rectify such unsuitable recommendation behaviors. This paper introduces a novel and significant task termed recommendation editing, which focuses on modifying known and unsuitable recommendation behaviors. Specifically, this task aims to adjust the recommendation model to eliminate known unsuitable items without accessing training data or retraining the model. We formally define the problem of recommendation editing with three primary objectives: strict rectification, collaborative rectification, and concentrated rectification. Three evaluation metrics are developed to quantitatively assess the achievement of each objective. We present a straightforward yet effective benchmark for recommendation editing using novel Editing Bayesian Personalized Ranking Loss. To demonstrate the effectiveness of the proposed method, we establish a comprehensive benchmark that incorporates various methods from related fields. Codebase is available at https://github.com/cycl2018/Recommendation-Editing.
Abstract:This work elicits LLMs' inherent ability to handle long contexts without fine-tuning. The limited length of the training sequence during training may limit the application of Large Language Models (LLMs) on long input sequences for inference. In this work, we argue that existing LLMs themselves have inherent capabilities for handling long contexts. Based on this argument, we suggest extending LLMs' context window by themselves to fully utilize the inherent ability.We propose Self-Extend to stimulate LLMs' long context handling potential. The basic idea is to construct bi-level attention information: the group level and the neighbor level. The two levels are computed by the original model's self-attention, which means the proposed does not require any training. With only four lines of code modification, the proposed method can effortlessly extend existing LLMs' context window without any fine-tuning. We conduct comprehensive experiments and the results show that the proposed method can effectively extend existing LLMs' context window's length.
Abstract:Contrastive Learning (CL) has shown promising performance in collaborative filtering. The key idea is to generate augmentation-invariant embeddings by maximizing the Mutual Information between different augmented views of the same instance. However, we empirically observe that existing CL models suffer from the \textsl{dimensional collapse} issue, where user/item embeddings only span a low-dimension subspace of the entire feature space. This suppresses other dimensional information and weakens the distinguishability of embeddings. Here we propose a non-contrastive learning objective, named nCL, which explicitly mitigates dimensional collapse of representations in collaborative filtering. Our nCL aims to achieve geometric properties of \textsl{Alignment} and \textsl{Compactness} on the embedding space. In particular, the alignment tries to push together representations of positive-related user-item pairs, while compactness tends to find the optimal coding length of user/item embeddings, subject to a given distortion. More importantly, our nCL does not require data augmentation nor negative sampling during training, making it scalable to large datasets. Experimental results demonstrate the superiority of our nCL.
Abstract:There has been significant progress in improving the performance of graph neural networks (GNNs) through enhancements in graph data, model architecture design, and training strategies. For fairness in graphs, recent studies achieve fair representations and predictions through either graph data pre-processing (e.g., node feature masking, and topology rewiring) or fair training strategies (e.g., regularization, adversarial debiasing, and fair contrastive learning). How to achieve fairness in graphs from the model architecture perspective is less explored. More importantly, GNNs exhibit worse fairness performance compared to multilayer perception since their model architecture (i.e., neighbor aggregation) amplifies biases. To this end, we aim to achieve fairness via a new GNN architecture. We propose \textsf{F}air \textsf{M}essage \textsf{P}assing (FMP) designed within a unified optimization framework for GNNs. Notably, FMP \textit{explicitly} renders sensitive attribute usage in \textit{forward propagation} for node classification task using cross-entropy loss without data pre-processing. In FMP, the aggregation is first adopted to utilize neighbors' information and then the bias mitigation step explicitly pushes demographic group node presentation centers together. In this way, FMP scheme can aggregate useful information from neighbors and mitigate bias to achieve better fairness and prediction tradeoff performance. Experiments on node classification tasks demonstrate that the proposed FMP outperforms several baselines in terms of fairness and accuracy on three real-world datasets. The code is available in {\url{https://github.com/zhimengj0326/FMP}}.
Abstract:In real-world applications, machine learning models often become obsolete due to shifts in the joint distribution arising from underlying temporal trends, a phenomenon known as the "concept drift". Existing works propose model-specific strategies to achieve temporal generalization in the near-future domain. However, the diverse characteristics of real-world datasets necessitate customized prediction model architectures. To this end, there is an urgent demand for a model-agnostic temporal domain generalization approach that maintains generality across diverse data modalities and architectures. In this work, we aim to address the concept drift problem from a data-centric perspective to bypass considering the interaction between data and model. Developing such a framework presents non-trivial challenges: (i) existing generative models struggle to generate out-of-distribution future data, and (ii) precisely capturing the temporal trends of joint distribution along chronological source domains is computationally infeasible. To tackle the challenges, we propose the COncept Drift simulAtor (CODA) framework incorporating a predicted feature correlation matrix to simulate future data for model training. Specifically, CODA leverages feature correlations to represent data characteristics at specific time points, thereby circumventing the daunting computational costs. Experimental results demonstrate that using CODA-generated data as training input effectively achieves temporal domain generalization across different model architectures.
Abstract:The evolving sophistication and intricacies of Large Language Models (LLMs) yield unprecedented advancements, yet they simultaneously demand considerable computational resources and incur significant costs. To alleviate these challenges, this paper introduces a novel, simple, and effective method named ``\growlength'' to accelerate the pretraining process of LLMs. Our method progressively increases the training length throughout the pretraining phase, thereby mitigating computational costs and enhancing efficiency. For instance, it begins with a sequence length of 128 and progressively extends to 4096. This approach enables models to process a larger number of tokens within limited time frames, potentially boosting their performance. In other words, the efficiency gain is derived from training with shorter sequences optimizing the utilization of resources. Our extensive experiments with various state-of-the-art LLMs have revealed that models trained using our method not only converge more swiftly but also exhibit superior performance metrics compared to those trained with existing methods. Furthermore, our method for LLMs pretraining acceleration does not require any additional engineering efforts, making it a practical solution in the realm of LLMs.
Abstract:We study graph data augmentation by mixup, which has been used successfully on images. A key operation of mixup is to compute a convex combination of a pair of inputs. This operation is straightforward for grid-like data, such as images, but challenging for graph data. The key difficulty lies in the fact that different graphs typically have different numbers of nodes, and thus there lacks a node-level correspondence between graphs. In this work, we propose S-Mixup, a simple yet effective mixup method for graph classification by soft alignments. Specifically, given a pair of graphs, we explicitly obtain node-level correspondence via computing a soft assignment matrix to match the nodes between two graphs. Based on the soft assignments, we transform the adjacency and node feature matrices of one graph, so that the transformed graph is aligned with the other graph. In this way, any pair of graphs can be mixed directly to generate an augmented graph. We conduct systematic experiments to show that S-Mixup can improve the performance and generalization of graph neural networks (GNNs) on various graph classification tasks. In addition, we show that S-Mixup can increase the robustness of GNNs against noisy labels.
Abstract:Despite Graph Neural Networks (GNNs) have achieved prominent success in many graph-based learning problem, such as credit risk assessment in financial networks and fake news detection in social networks. However, the trained GNNs still make errors and these errors may cause serious negative impact on society. \textit{Model editing}, which corrects the model behavior on wrongly predicted target samples while leaving model predictions unchanged on unrelated samples, has garnered significant interest in the fields of computer vision and natural language processing. However, model editing for graph neural networks (GNNs) is rarely explored, despite GNNs' widespread applicability. To fill the gap, we first observe that existing model editing methods significantly deteriorate prediction accuracy (up to $50\%$ accuracy drop) in GNNs while a slight accuracy drop in multi-layer perception (MLP). The rationale behind this observation is that the node aggregation in GNNs will spread the editing effect throughout the whole graph. This propagation pushes the node representation far from its original one. Motivated by this observation, we propose \underline{E}ditable \underline{G}raph \underline{N}eural \underline{N}etworks (EGNN), a neighbor propagation-free approach to correct the model prediction on misclassified nodes. Specifically, EGNN simply stitches an MLP to the underlying GNNs, where the weights of GNNs are frozen during model editing. In this way, EGNN disables the propagation during editing while still utilizing the neighbor propagation scheme for node prediction to obtain satisfactory results. Experiments demonstrate that EGNN outperforms existing baselines in terms of effectiveness (correcting wrong predictions with lower accuracy drop), generalizability (correcting wrong predictions for other similar nodes), and efficiency (low training time and memory) on various graph datasets.
Abstract:With the rapid growth in model size, fine-tuning the large pre-trained language model has become increasingly difficult due to its extensive memory usage. Previous works usually focus on reducing the number of trainable parameters in the network. While the model parameters do contribute to memory usage, the primary memory bottleneck during training arises from storing feature maps, also known as activations, as they are crucial for gradient calculation. Notably, neural networks are usually trained using stochastic gradient descent. We argue that in stochastic optimization, models can handle noisy gradients as long as the gradient estimator is unbiased with reasonable variance. Following this motivation, we propose a new family of unbiased estimators called WTA-CRS, for matrix production with reduced variance, which only requires storing the sub-sampled activations for calculating the gradient. Our work provides both theoretical and experimental evidence that, in the context of tuning transformers, our proposed estimators exhibit lower variance compared to existing ones. By replacing the linear operation with our approximated one in transformers, we can achieve up to 2.7$\times$ peak memory reduction with almost no accuracy drop and enables up to $6.4\times$ larger batch size. Under the same hardware, WTA-CRS enables better down-streaming task performance by applying larger models and/or faster training speed with larger batch sizes.