Abstract:Recommendation systems play a pivotal role in suggesting items to users based on their preferences. However, in online platforms, these systems inevitably offer unsuitable recommendations due to limited model capacity, poor data quality, or evolving user interests. Enhancing user experience necessitates efficiently rectify such unsuitable recommendation behaviors. This paper introduces a novel and significant task termed recommendation editing, which focuses on modifying known and unsuitable recommendation behaviors. Specifically, this task aims to adjust the recommendation model to eliminate known unsuitable items without accessing training data or retraining the model. We formally define the problem of recommendation editing with three primary objectives: strict rectification, collaborative rectification, and concentrated rectification. Three evaluation metrics are developed to quantitatively assess the achievement of each objective. We present a straightforward yet effective benchmark for recommendation editing using novel Editing Bayesian Personalized Ranking Loss. To demonstrate the effectiveness of the proposed method, we establish a comprehensive benchmark that incorporates various methods from related fields. Codebase is available at https://github.com/cycl2018/Recommendation-Editing.
Abstract:Graph Neural Networks (GNNs) have demonstrated strong performance in graph mining tasks due to their message-passing mechanism, which is aligned with the homophily assumption that adjacent nodes exhibit similar behaviors. However, in many real-world graphs, connected nodes may display contrasting behaviors, termed as heterophilous patterns, which has attracted increased interest in heterophilous GNNs (HTGNNs). Although the message-passing mechanism seems unsuitable for heterophilous graphs due to the propagation of class-irrelevant information, it is still widely used in many existing HTGNNs and consistently achieves notable success. This raises the question: why does message passing remain effective on heterophilous graphs? To answer this question, in this paper, we revisit the message-passing mechanisms in heterophilous graph neural networks and reformulate them into a unified heterophilious message-passing (HTMP) mechanism. Based on HTMP and empirical analysis, we reveal that the success of message passing in existing HTGNNs is attributed to implicitly enhancing the compatibility matrix among classes. Moreover, we argue that the full potential of the compatibility matrix is not completely achieved due to the existence of incomplete and noisy semantic neighborhoods in real-world heterophilous graphs. To bridge this gap, we introduce a new approach named CMGNN, which operates within the HTMP mechanism to explicitly leverage and improve the compatibility matrix. A thorough evaluation involving 10 benchmark datasets and comparative analysis against 13 well-established baselines highlights the superior performance of the HTMP mechanism and CMGNN method.