Abstract:Supervised Fine-Tuning (SFT) has been a go-to and effective method for enhancing long chain-of-thought (CoT) reasoning in relatively small LLMs by fine-tuning them with long CoT responses from larger LLMs. To continually improve reasoning abilities, we can either collect new high-quality long CoT reasoning SFT data or repeatedly train on existing SFT datasets. However, acquiring new long CoT SFT data is costly and limited, while repeated training often results in a performance plateau or decline. To further boost the performance with the SFT data, we propose Thinking Preference Optimization (ThinkPO), a simple yet effective post-SFT method that enhances long CoT reasoning without requiring new long CoT responses. Instead, ThinkPO utilizes readily available or easily obtainable short CoT reasoning responses as rejected answers and long CoT responses as chosen answers for the same question. It then applies direct preference optimization to encourage the model to favor longer reasoning outputs. Experiments show that ThinkPO further improves the reasoning performance of SFT-ed models, e.g. it increases math reasoning accuracy of SFT-ed models by 8.6% and output length by 25.9%. Notably, ThinkPO is capable of continually boosting the performance of the publicly distilled SFT model, e.g., increasing the official DeepSeek-R1-Distill-Qwen-7B's performance on MATH500 from 87.4% to 91.2%.
Abstract:Due to the scarcity of agent-oriented pre-training data, LLM-based autonomous agents typically rely on complex prompting or extensive fine-tuning, which often fails to introduce new capabilities while preserving strong generalizability. We introduce Hephaestus-Forge, the first large-scale pre-training corpus designed to enhance the fundamental capabilities of LLM agents in API function calling, intrinsic reasoning and planning, and adapting to environmental feedback. Hephaestus-Forge comprises 103B agent-specific data encompassing 76,537 APIs, including both tool documentation to introduce knowledge of API functions and function calling trajectories to strengthen intrinsic reasoning. To explore effective training protocols, we investigate scaling laws to identify the optimal recipe in data mixing ratios. By continual pre-training on Hephaestus-Forge, Hephaestus outperforms small- to medium-scale open-source LLMs and rivals commercial LLMs on three agent benchmarks, demonstrating the effectiveness of our pre-training corpus in enhancing fundamental agentic capabilities and generalization of LLMs to new tasks or environments.
Abstract:Online shopping is a complex multi-task, few-shot learning problem with a wide and evolving range of entities, relations, and tasks. However, existing models and benchmarks are commonly tailored to specific tasks, falling short of capturing the full complexity of online shopping. Large Language Models (LLMs), with their multi-task and few-shot learning abilities, have the potential to profoundly transform online shopping by alleviating task-specific engineering efforts and by providing users with interactive conversations. Despite the potential, LLMs face unique challenges in online shopping, such as domain-specific concepts, implicit knowledge, and heterogeneous user behaviors. Motivated by the potential and challenges, we propose Shopping MMLU, a diverse multi-task online shopping benchmark derived from real-world Amazon data. Shopping MMLU consists of 57 tasks covering 4 major shopping skills: concept understanding, knowledge reasoning, user behavior alignment, and multi-linguality, and can thus comprehensively evaluate the abilities of LLMs as general shop assistants. With Shopping MMLU, we benchmark over 20 existing LLMs and uncover valuable insights about practices and prospects of building versatile LLM-based shop assistants. Shopping MMLU can be publicly accessed at https://github.com/KL4805/ShoppingMMLU. In addition, with Shopping MMLU, we host a competition in KDD Cup 2024 with over 500 participating teams. The winning solutions and the associated workshop can be accessed at our website https://amazon-kddcup24.github.io/.
Abstract:Precise estimation of downstream performance in large language models (LLMs) prior to training is essential for guiding their development process. Scaling laws analysis utilizes the statistics of a series of significantly smaller sampling language models (LMs) to predict the performance of the target LLM. For downstream performance prediction, the critical challenge lies in the emergent abilities in LLMs that occur beyond task-specific computational thresholds. In this work, we focus on the pre-training loss as a more computation-efficient metric for performance estimation. Our two-stage approach consists of first estimating a function that maps computational resources (e.g., FLOPs) to the pre-training Loss using a series of sampling models, followed by mapping the pre-training loss to downstream task Performance after the critical "emergent phase". In preliminary experiments, this FLP solution accurately predicts the performance of LLMs with 7B and 13B parameters using a series of sampling LMs up to 3B, achieving error margins of 5% and 10%, respectively, and significantly outperforming the FLOPs-to-Performance approach. This motivates FLP-M, a fundamental approach for performance prediction that addresses the practical need to integrate datasets from multiple sources during pre-training, specifically blending general corpora with code data to accurately represent the common necessity. FLP-M extends the power law analytical function to predict domain-specific pre-training loss based on FLOPs across data sources, and employs a two-layer neural network to model the non-linear relationship between multiple domain-specific loss and downstream performance. By utilizing a 3B LLM trained on a specific ratio and a series of smaller sampling LMs, FLP-M can effectively forecast the performance of 3B and 7B LLMs across various data mixtures for most benchmarks within 10% error margins.
Abstract:Reasoning encompasses two typical types: deductive reasoning and inductive reasoning. Despite extensive research into the reasoning capabilities of Large Language Models (LLMs), most studies have failed to rigorously differentiate between inductive and deductive reasoning, leading to a blending of the two. This raises an essential question: In LLM reasoning, which poses a greater challenge - deductive or inductive reasoning? While the deductive reasoning capabilities of LLMs, (i.e. their capacity to follow instructions in reasoning tasks), have received considerable attention, their abilities in true inductive reasoning remain largely unexplored. To investigate into the true inductive reasoning capabilities of LLMs, we propose a novel framework, SolverLearner. This framework enables LLMs to learn the underlying function (i.e., $y = f_w(x)$), that maps input data points $(x)$ to their corresponding output values $(y)$, using only in-context examples. By focusing on inductive reasoning and separating it from LLM-based deductive reasoning, we can isolate and investigate inductive reasoning of LLMs in its pure form via SolverLearner. Our observations reveal that LLMs demonstrate remarkable inductive reasoning capabilities through SolverLearner, achieving near-perfect performance with ACC of 1 in most cases. Surprisingly, despite their strong inductive reasoning abilities, LLMs tend to relatively lack deductive reasoning capabilities, particularly in tasks involving ``counterfactual'' reasoning.
Abstract:The Segmentation Anything Model (SAM) requires labor-intensive data labeling. We present Unsupervised SAM (UnSAM) for promptable and automatic whole-image segmentation that does not require human annotations. UnSAM utilizes a divide-and-conquer strategy to "discover" the hierarchical structure of visual scenes. We first leverage top-down clustering methods to partition an unlabeled image into instance/semantic level segments. For all pixels within a segment, a bottom-up clustering method is employed to iteratively merge them into larger groups, thereby forming a hierarchical structure. These unsupervised multi-granular masks are then utilized to supervise model training. Evaluated across seven popular datasets, UnSAM achieves competitive results with the supervised counterpart SAM, and surpasses the previous state-of-the-art in unsupervised segmentation by 11% in terms of AR. Moreover, we show that supervised SAM can also benefit from our self-supervised labels. By integrating our unsupervised pseudo masks into SA-1B's ground-truth masks and training UnSAM with only 1% of SA-1B, a lightly semi-supervised UnSAM can often segment entities overlooked by supervised SAM, exceeding SAM's AR by over 6.7% and AP by 3.9% on SA-1B.
Abstract:This work elicits LLMs' inherent ability to handle long contexts without fine-tuning. The limited length of the training sequence during training may limit the application of Large Language Models (LLMs) on long input sequences for inference. In this work, we argue that existing LLMs themselves have inherent capabilities for handling long contexts. Based on this argument, we suggest extending LLMs' context window by themselves to fully utilize the inherent ability.We propose Self-Extend to stimulate LLMs' long context handling potential. The basic idea is to construct bi-level attention information: the group level and the neighbor level. The two levels are computed by the original model's self-attention, which means the proposed does not require any training. With only four lines of code modification, the proposed method can effortlessly extend existing LLMs' context window without any fine-tuning. We conduct comprehensive experiments and the results show that the proposed method can effectively extend existing LLMs' context window's length.
Abstract:The goal of session-based recommendation in E-commerce is to predict the next item that an anonymous user will purchase based on the browsing and purchase history. However, constructing global or local transition graphs to supplement session data can lead to noisy correlations and user intent vanishing. In this work, we propose the Frequent Attribute Pattern Augmented Transformer (FAPAT) that characterizes user intents by building attribute transition graphs and matching attribute patterns. Specifically, the frequent and compact attribute patterns are served as memory to augment session representations, followed by a gate and a transformer block to fuse the whole session information. Through extensive experiments on two public benchmarks and 100 million industrial data in three domains, we demonstrate that FAPAT consistently outperforms state-of-the-art methods by an average of 4.5% across various evaluation metrics (Hits, NDCG, MRR). Besides evaluating the next-item prediction, we estimate the models' capabilities to capture user intents via predicting items' attributes and period-item recommendations.
Abstract:The evolving sophistication and intricacies of Large Language Models (LLMs) yield unprecedented advancements, yet they simultaneously demand considerable computational resources and incur significant costs. To alleviate these challenges, this paper introduces a novel, simple, and effective method named ``\growlength'' to accelerate the pretraining process of LLMs. Our method progressively increases the training length throughout the pretraining phase, thereby mitigating computational costs and enhancing efficiency. For instance, it begins with a sequence length of 128 and progressively extends to 4096. This approach enables models to process a larger number of tokens within limited time frames, potentially boosting their performance. In other words, the efficiency gain is derived from training with shorter sequences optimizing the utilization of resources. Our extensive experiments with various state-of-the-art LLMs have revealed that models trained using our method not only converge more swiftly but also exhibit superior performance metrics compared to those trained with existing methods. Furthermore, our method for LLMs pretraining acceleration does not require any additional engineering efforts, making it a practical solution in the realm of LLMs.
Abstract:Natural language is among the most accessible tools for explaining decisions to humans, and large pretrained language models (PLMs) have demonstrated impressive abilities to generate coherent natural language explanations (NLE). The existing NLE research perspectives do not take the audience into account. An NLE can have high textual quality, but it might not accommodate audiences' needs and preference. To address this limitation, we propose an alternative perspective, situated NLE, including a situated generation framework and a situated evaluation framework. On the generation side, we propose simple prompt engineering methods that adapt the NLEs to situations. In human studies, the annotators preferred the situated NLEs. On the evaluation side, we set up automated evaluation scores in lexical, semantic, and pragmatic categories. The scores can be used to select the most suitable prompts to generate NLEs. Situated NLE provides a perspective to conduct further research on automatic NLE generations.