Abstract:LiDAR and photogrammetry are active and passive remote sensing techniques for point cloud acquisition, respectively, offering complementary advantages and heterogeneous. Due to the fundamental differences in sensing mechanisms, spatial distributions and coordinate systems, their point clouds exhibit significant discrepancies in density, precision, noise, and overlap. Coupled with the lack of ground truth for large-scale scenes, integrating the heterogeneous point clouds is a highly challenging task. This paper proposes a self-supervised registration network based on a masked autoencoder, focusing on heterogeneous LiDAR and photogrammetric point clouds. At its core, the method introduces a multi-scale masked training strategy to extract robust features from heterogeneous point clouds under self-supervision. To further enhance registration performance, a rotation-translation embedding module is designed to effectively capture the key features essential for accurate rigid transformations. Building upon the robust representations, a transformer-based architecture seamlessly integrates local and global features, fostering precise alignment across diverse point cloud datasets. The proposed method demonstrates strong feature extraction capabilities for both LiDAR and photogrammetric point clouds, addressing the challenges of acquiring ground truth at the scene level. Experiments conducted on two real-world datasets validate the effectiveness of the proposed method in solving heterogeneous point cloud registration problems.
Abstract:Multispectral point cloud (MPC) captures 3D spatial-spectral information from the observed scene, which can be used for scene understanding and has a wide range of applications. However, most of the existing classification methods were extensively tested on indoor datasets, and when applied to outdoor datasets they still face problems including sparse labeled targets, differences in land-covers scales, and long-tailed distributions. To address the above issues, an enhanced classification method based on adaptive multi-scale fusion for MPCs with long-tailed distributions is proposed. In the training set generation stage, a grid-balanced sampling strategy is designed to reliably generate training samples from sparse labeled datasets. In the feature learning stage, a multi-scale feature fusion module is proposed to fuse shallow features of land-covers at different scales, addressing the issue of losing fine features due to scale variations in land-covers. In the classification stage, an adaptive hybrid loss module is devised to utilize multi-classification heads with adaptive weights to balance the learning ability of different classes, improving the classification performance of small classes due to various-scales and long-tailed distributions in land-covers. Experimental results on three MPC datasets demonstrate the effectiveness of the proposed method compared with the state-of-the-art methods.
Abstract:Large language models (LLMs) are restricted to reason in the "language space", where they typically express the reasoning process with a chain-of-thought (CoT) to solve a complex reasoning problem. However, we argue that language space may not always be optimal for reasoning. For example, most word tokens are primarily for textual coherence and not essential for reasoning, while some critical tokens require complex planning and pose huge challenges to LLMs. To explore the potential of LLM reasoning in an unrestricted latent space instead of using natural language, we introduce a new paradigm Coconut (Chain of Continuous Thought). We utilize the last hidden state of the LLM as a representation of the reasoning state (termed "continuous thought"). Rather than decoding this into a word token, we feed it back to the LLM as the subsequent input embedding directly in the continuous space. Experiments show that Coconut can effectively augment the LLM on several reasoning tasks. This novel latent reasoning paradigm leads to emergent advanced reasoning patterns: the continuous thought can encode multiple alternative next reasoning steps, allowing the model to perform a breadth-first search (BFS) to solve the problem, rather than prematurely committing to a single deterministic path like CoT. Coconut outperforms CoT in certain logical reasoning tasks that require substantial backtracking during planning, with fewer thinking tokens during inference. These findings demonstrate the promise of latent reasoning and offer valuable insights for future research.
Abstract:How are LLM-based agents used in the future? While many of the existing work on agents has focused on improving the performance of a specific family of objective and challenging tasks, in this work, we take a different perspective by thinking about full delegation: agents take over humans' routine decision-making processes and are trusted by humans to find solutions that fit people's personalized needs and are adaptive to ever-changing context. In order to achieve such a goal, the behavior of the agents, i.e., agentic behaviors, should be evaluated not only on their achievements (i.e., outcome evaluation), but also how they achieved that (i.e., procedure evaluation). For this, we propose APEC Agent Constitution, a list of criteria that an agent should follow for good agentic behaviors, including Accuracy, Proactivity, Efficiency and Credibility. To verify whether APEC aligns with human preferences, we develop APEC-Travel, a travel planning agent that proactively extracts hidden personalized needs via multi-round dialog with travelers. APEC-Travel is constructed purely from synthetic data generated by Llama3.1-405B-Instruct with a diverse set of travelers' persona to simulate rich distribution of dialogs. Iteratively fine-tuned to follow APEC Agent Constitution, APEC-Travel surpasses baselines by 20.7% on rule-based metrics and 9.1% on LLM-as-a-Judge scores across the constitution axes.
Abstract:Online shopping is a complex multi-task, few-shot learning problem with a wide and evolving range of entities, relations, and tasks. However, existing models and benchmarks are commonly tailored to specific tasks, falling short of capturing the full complexity of online shopping. Large Language Models (LLMs), with their multi-task and few-shot learning abilities, have the potential to profoundly transform online shopping by alleviating task-specific engineering efforts and by providing users with interactive conversations. Despite the potential, LLMs face unique challenges in online shopping, such as domain-specific concepts, implicit knowledge, and heterogeneous user behaviors. Motivated by the potential and challenges, we propose Shopping MMLU, a diverse multi-task online shopping benchmark derived from real-world Amazon data. Shopping MMLU consists of 57 tasks covering 4 major shopping skills: concept understanding, knowledge reasoning, user behavior alignment, and multi-linguality, and can thus comprehensively evaluate the abilities of LLMs as general shop assistants. With Shopping MMLU, we benchmark over 20 existing LLMs and uncover valuable insights about practices and prospects of building versatile LLM-based shop assistants. Shopping MMLU can be publicly accessed at https://github.com/KL4805/ShoppingMMLU. In addition, with Shopping MMLU, we host a competition in KDD Cup 2024 with over 500 participating teams. The winning solutions and the associated workshop can be accessed at our website https://amazon-kddcup24.github.io/.
Abstract:Travel planning is a challenging and time-consuming task that aims to find an itinerary which satisfies multiple, interdependent constraints regarding flights, accommodations, attractions, and other travel arrangements. In this paper, we propose To the Globe (TTG), a real-time demo system that takes natural language requests from users, translates it to symbolic form via a fine-tuned Large Language Model, and produces optimal travel itineraries with Mixed Integer Linear Programming solvers. The overall system takes ~5 seconds to reply to the user request with guaranteed itineraries. To train TTG, we develop a synthetic data pipeline that generates user requests, flight and hotel information in symbolic form without human annotations, based on the statistics of real-world datasets, and fine-tune an LLM to translate NL user requests to their symbolic form, which is sent to the symbolic solver to compute optimal itineraries. Our NL-symbolic translation achieves ~91% exact match in a backtranslation metric (i.e., whether the estimated symbolic form of generated natural language matches the groundtruth), and its returned itineraries have a ratio of 0.979 compared to the optimal cost of the ground truth user request. When evaluated by users, TTG achieves consistently high Net Promoter Scores (NPS) of 35-40% on generated itinerary.
Abstract:To solve the Grammatical Error Correction (GEC) problem , a mapping between a source sequence and a target one is needed, where the two differ only on few spans. For this reason, the attention has been shifted to the non-autoregressive or sequence tagging models. In which, the GEC has been simplified from Seq2Seq to labeling the input tokens with edit commands chosen from a large edit space. Due to this large number of classes and the limitation of the available datasets, the current sequence tagging approaches still have some issues handling a broad range of grammatical errors just by being laser-focused on one single task. To this end, we simplified the GEC further by dividing it into seven related subtasks: Insertion, Deletion, Merge, Substitution, Transformation, Detection, and Correction, with Correction being our primary focus. A distinct classification head is dedicated to each of these subtasks. the novel multi-head and multi-task learning model is proposed to effectively utilize training data and harness the information from related task training signals. To mitigate the limited number of available training samples, a new denoising autoencoder is used to generate a new synthetic dataset to be used for pretraining. Additionally, a new character-level transformation is proposed to enhance the sequence-to-edit function and improve the model's vocabulary coverage. Our single/ensemble model achieves an F0.5 of 74.4/77.0, and 68.6/69.1 on BEA-19 (test) and CoNLL-14 (test) respectively. Moreover, evaluated on JFLEG test set, the GLEU scores are 61.6 and 61.7 for the single and ensemble models, respectively. It mostly outperforms recently published state-of-the-art results by a considerable margin.
Abstract:We propose a new method, instruction back-and-forth translation, to construct high-quality synthetic data grounded in world knowledge for aligning large language models (LLMs). Given documents from a web corpus, we generate and curate synthetic instructions using the backtranslation approach proposed by Li et al.(2023a), and rewrite the responses to improve their quality further based on the initial documents. Fine-tuning with the resulting (backtranslated instruction, rewritten response) pairs yields higher win rates on AlpacaEval than using other common instruction datasets such as Humpback, ShareGPT, Open Orca, Alpaca-GPT4 and Self-instruct. We also demonstrate that rewriting the responses with an LLM outperforms direct distillation, and the two generated text distributions exhibit significant distinction in embedding space. Further analysis shows that our backtranslated instructions are of higher quality than other sources of synthetic instructions, while our responses are more diverse and complex than those obtained from distillation. Overall we find that instruction back-and-forth translation combines the best of both worlds -- making use of the information diversity and quantity found on the web, while ensuring the quality of the responses which is necessary for effective alignment.
Abstract:Reasoning encompasses two typical types: deductive reasoning and inductive reasoning. Despite extensive research into the reasoning capabilities of Large Language Models (LLMs), most studies have failed to rigorously differentiate between inductive and deductive reasoning, leading to a blending of the two. This raises an essential question: In LLM reasoning, which poses a greater challenge - deductive or inductive reasoning? While the deductive reasoning capabilities of LLMs, (i.e. their capacity to follow instructions in reasoning tasks), have received considerable attention, their abilities in true inductive reasoning remain largely unexplored. To investigate into the true inductive reasoning capabilities of LLMs, we propose a novel framework, SolverLearner. This framework enables LLMs to learn the underlying function (i.e., $y = f_w(x)$), that maps input data points $(x)$ to their corresponding output values $(y)$, using only in-context examples. By focusing on inductive reasoning and separating it from LLM-based deductive reasoning, we can isolate and investigate inductive reasoning of LLMs in its pure form via SolverLearner. Our observations reveal that LLMs demonstrate remarkable inductive reasoning capabilities through SolverLearner, achieving near-perfect performance with ACC of 1 in most cases. Surprisingly, despite their strong inductive reasoning abilities, LLMs tend to relatively lack deductive reasoning capabilities, particularly in tasks involving ``counterfactual'' reasoning.
Abstract:Model-based evaluation is at the heart of successful model development -- as a reward model for training, and as a replacement for human evaluation. To train such evaluators, the standard approach is to collect a large amount of human preference judgments over model responses, which is costly and the data becomes stale as models improve. In this work, we present an approach that aims to im-prove evaluators without human annotations, using synthetic training data only. Starting from unlabeled instructions, our iterative self-improvement scheme generates contrasting model outputs and trains an LLM-as-a-Judge to produce reasoning traces and final judgments, repeating this training at each new iteration using the improved predictions. Without any labeled preference data, our Self-Taught Evaluator can improve a strong LLM (Llama3-70B-Instruct) from 75.4 to 88.3 (88.7 with majority vote) on RewardBench. This outperforms commonly used LLM judges such as GPT-4 and matches the performance of the top-performing reward models trained with labeled examples.