Abstract:The rapid evolution of Large Language Models (LLMs) offers promising potential to alleviate the global scarcity of mental health professionals. However, LLMs' alignment with essential mental health counseling competencies remains understudied. We introduce CounselingBench, a novel NCMHCE-based benchmark evaluating LLMs across five key mental health counseling competencies. Testing 22 general-purpose and medical-finetuned LLMs, we find frontier models exceed minimum thresholds but fall short of expert-level performance, with significant variations: they excel in Intake, Assessment & Diagnosis yet struggle with Core Counseling Attributes and Professional Practice & Ethics. Medical LLMs surprisingly underperform generalist models accuracy-wise, while at the same time producing slightly higher-quality justifications but making more context-related errors. Our findings highlight the complexities of developing AI systems for mental health counseling, particularly for competencies requiring empathy and contextual understanding. We found that frontier LLMs perform at a level exceeding the minimal required level of aptitude for all key mental health counseling competencies, but fall short of expert-level performance, and that current medical LLMs do not significantly improve upon generalist models in mental health counseling competencies. This underscores the critical need for specialized, mental health counseling-specific fine-tuned LLMs that rigorously aligns with core competencies combined with appropriate human supervision before any responsible real-world deployment can be considered.
Abstract:Adverse Drug Reactions (ADRs) from psychiatric medications are the leading cause of hospitalizations among mental health patients. With healthcare systems and online communities facing limitations in resolving ADR-related issues, Large Language Models (LLMs) have the potential to fill this gap. Despite the increasing capabilities of LLMs, past research has not explored their capabilities in detecting ADRs related to psychiatric medications or in providing effective harm reduction strategies. To address this, we introduce the Psych-ADR benchmark and the Adverse Drug Reaction Response Assessment (ADRA) framework to systematically evaluate LLM performance in detecting ADR expressions and delivering expert-aligned mitigation strategies. Our analyses show that LLMs struggle with understanding the nuances of ADRs and differentiating between types of ADRs. While LLMs align with experts in terms of expressed emotions and tone of the text, their responses are more complex, harder to read, and only 70.86% aligned with expert strategies. Furthermore, they provide less actionable advice by a margin of 12.32% on average. Our work provides a comprehensive benchmark and evaluation framework for assessing LLMs in strategy-driven tasks within high-risk domains.
Abstract:Over one in five adults in the US lives with a mental illness. In the face of a shortage of mental health professionals and offline resources, online short-form video content has grown to serve as a crucial conduit for disseminating mental health help and resources. However, the ease of content creation and access also contributes to the spread of misinformation, posing risks to accurate diagnosis and treatment. Detecting and understanding engagement with such content is crucial to mitigating their harmful effects on public health. We perform the first quantitative study of the phenomenon using YouTube Shorts and Bitchute as the sites of study. We contribute MentalMisinfo, a novel labeled mental health misinformation (MHMisinfo) dataset of 739 videos (639 from Youtube and 100 from Bitchute) and 135372 comments in total, using an expert-driven annotation schema. We first found that few-shot in-context learning with large language models (LLMs) are effective in detecting MHMisinfo videos. Next, we discover distinct and potentially alarming linguistic patterns in how audiences engage with MHMisinfo videos through commentary on both video-sharing platforms. Across the two platforms, comments could exacerbate prevailing stigma with some groups showing heightened susceptibility to and alignment with MHMisinfo. We discuss technical and public health-driven adaptive solutions to tackling the "epidemic" of mental health misinformation online.