Abstract:Semi-supervised learning (SSL) has garnered significant attention due to its ability to leverage limited labeled data and a large amount of unlabeled data to improve model generalization performance. Recent approaches achieve impressive successes by combining ideas from both consistency regularization and pseudo-labeling. However, these methods tend to underperform in the more realistic situations with relatively scarce labeled data. We argue that this issue arises because existing methods rely solely on the model's confidence, making them challenging to accurately assess the model's state and identify unlabeled examples contributing to the training phase when supervision information is limited, especially during the early stages of model training. In this paper, we propose a novel SSL model called CGMatch, which, for the first time, incorporates a new metric known as Count-Gap (CG). We demonstrate that CG is effective in discovering unlabeled examples beneficial for model training. Along with confidence, a commonly used metric in SSL, we propose a fine-grained dynamic selection (FDS) strategy. This strategy dynamically divides the unlabeled dataset into three subsets with different characteristics: easy-to-learn set, ambiguous set, and hard-to-learn set. By selective filtering subsets, and applying corresponding regularization with selected subsets, we mitigate the negative impact of incorrect pseudo-labels on model optimization and generalization. Extensive experimental results on several common SSL benchmarks indicate the effectiveness of CGMatch especially when the labeled data are particularly limited. Source code is available at https://github.com/BoCheng-96/CGMatch.
Abstract:The primary challenge of multi-label active learning, differing it from multi-class active learning, lies in assessing the informativeness of an indefinite number of labels while also accounting for the inherited label correlation. Existing studies either require substantial computational resources to leverage correlations or fail to fully explore label dependencies. Additionally, real-world scenarios often require addressing intrinsic biases stemming from imbalanced data distributions. In this paper, we propose a new multi-label active learning strategy to address both challenges. Our method incorporates progressively updated positive and negative correlation matrices to capture co-occurrence and disjoint relationships within the label space of annotated samples, enabling a holistic assessment of uncertainty rather than treating labels as isolated elements. Furthermore, alongside diversity, our model employs ensemble pseudo labeling and beta scoring rules to address data imbalances. Extensive experiments on four realistic datasets demonstrate that our strategy consistently achieves more reliable and superior performance, compared to several established methods.
Abstract:Topic modeling is a fundamental task in natural language processing, allowing the discovery of latent thematic structures in text corpora. While Large Language Models (LLMs) have demonstrated promising capabilities in topic discovery, their direct application to topic modeling suffers from issues such as incomplete topic coverage, misalignment of topics, and inefficiency. To address these limitations, we propose LLM-ITL, a novel LLM-in-the-loop framework that integrates LLMs with many existing Neural Topic Models (NTMs). In LLM-ITL, global topics and document representations are learned through the NTM, while an LLM refines the topics via a confidence-weighted Optimal Transport (OT)-based alignment objective. This process enhances the interpretability and coherence of the learned topics, while maintaining the efficiency of NTMs. Extensive experiments demonstrate that LLM-ITL can help NTMs significantly improve their topic interpretability while maintaining the quality of document representation.
Abstract:Resolving conflicts is essential to make the decisions of multi-view classification more reliable. Much research has been conducted on learning consistent informative representations among different views, assuming that all views are identically important and strictly aligned. However, real-world multi-view data may not always conform to these assumptions, as some views may express distinct information. To address this issue, we develop a computational trust-based discounting method to enhance the existing trustworthy framework in scenarios where conflicts between different views may arise. Its belief fusion process considers the trustworthiness of predictions made by individual views via an instance-wise probability-sensitive trust discounting mechanism. We evaluate our method on six real-world datasets, using Top-1 Accuracy, AUC-ROC for Uncertainty-Aware Prediction, Fleiss' Kappa, and a new metric called Multi-View Agreement with Ground Truth that takes into consideration the ground truth labels. The experimental results show that computational trust can effectively resolve conflicts, paving the way for more reliable multi-view classification models in real-world applications.
Abstract:Few/Zero-shot learning is a big challenge of many classifications tasks, where a classifier is required to recognise instances of classes that have very few or even no training samples. It becomes more difficult in multi-label classification, where each instance is labelled with more than one class. In this paper, we present a simple multi-graph aggregation model that fuses knowledge from multiple label graphs encoding different semantic label relationships in order to study how the aggregated knowledge can benefit multi-label zero/few-shot document classification. The model utilises three kinds of semantic information, i.e., the pre-trained word embeddings, label description, and pre-defined label relations. Experimental results derived on two large clinical datasets (i.e., MIMIC-II and MIMIC-III) and the EU legislation dataset show that methods equipped with the multi-graph knowledge aggregation achieve significant performance improvement across almost all the measures on few/zero-shot labels.