Abstract:This work demonstrates universal dynamic perching capabilities for quadrotors of various sizes and on surfaces with different orientations. By employing a non-dimensionalization framework and deep reinforcement learning, we systematically assessed how robot size and surface orientation affect landing capabilities. We hypothesized that maintaining geometric proportions across different robot scales ensures consistent perching behavior, which was validated in both simulation and experimental tests. Additionally, we investigated the effects of joint stiffness and damping in the landing gear on perching behaviors and performance. While joint stiffness had minimal impact, joint damping ratios influenced landing success under vertical approaching conditions. The study also identified a critical velocity threshold necessary for successful perching, determined by the robot's maneuverability and leg geometry. Overall, this research advances robotic perching capabilities, offering insights into the role of mechanical design and scaling effects, and lays the groundwork for future drone autonomy and operational efficiency in unstructured environments.
Abstract:The task of layout-to-image generation involves synthesizing images based on the captions of objects and their spatial positions. Existing methods still struggle in complex layout generation, where common bad cases include object missing, inconsistent lighting, conflicting view angles, etc. To effectively address these issues, we propose a \textbf{Hi}erarchical \textbf{Co}ntrollable (HiCo) diffusion model for layout-to-image generation, featuring object seperable conditioning branch structure. Our key insight is to achieve spatial disentanglement through hierarchical modeling of layouts. We use a multi branch structure to represent hierarchy and aggregate them in fusion module. To evaluate the performance of multi-objective controllable layout generation in natural scenes, we introduce the HiCo-7K benchmark, derived from the GRIT-20M dataset and manually cleaned. https://github.com/360CVGroup/HiCo_T2I.
Abstract:Synthesizing motion-rich and temporally consistent videos remains a challenge in artificial intelligence, especially when dealing with extended durations. Existing text-to-video (T2V) models commonly employ spatial cross-attention for text control, equivalently guiding different frame generations without frame-specific textual guidance. Thus, the model's capacity to comprehend the temporal logic conveyed in prompts and generate videos with coherent motion is restricted. To tackle this limitation, we introduce FancyVideo, an innovative video generator that improves the existing text-control mechanism with the well-designed Cross-frame Textual Guidance Module (CTGM). Specifically, CTGM incorporates the Temporal Information Injector (TII), Temporal Affinity Refiner (TAR), and Temporal Feature Booster (TFB) at the beginning, middle, and end of cross-attention, respectively, to achieve frame-specific textual guidance. Firstly, TII injects frame-specific information from latent features into text conditions, thereby obtaining cross-frame textual conditions. Then, TAR refines the correlation matrix between cross-frame textual conditions and latent features along the time dimension. Lastly, TFB boosts the temporal consistency of latent features. Extensive experiments comprising both quantitative and qualitative evaluations demonstrate the effectiveness of FancyVideo. Our approach achieves state-of-the-art T2V generation results on the EvalCrafter benchmark and facilitates the synthesis of dynamic and consistent videos. The video show results can be available at https://fancyvideo.github.io/, and we will make our code and model weights publicly available.
Abstract:Different languages have distinct phonetic systems and vary in their prosodic features making it challenging to develop a Text-to-Speech (TTS) model that can effectively synthesise speech in multilingual settings. Furthermore, TTS architecture needs to be both efficient enough to capture nuances in multiple languages and efficient enough to be practical for deployment. The standard approach is to build transformer based model such as SpeechT5 and train it on large multilingual dataset. As the size of these models grow the conventional fine-tuning for adapting these model becomes impractical due to heavy computational cost. In this paper, we proposes to integrate parameter-efficient transfer learning (PETL) methods such as adapters and hypernetwork with TTS architecture for multilingual speech synthesis. Notably, in our experiments PETL methods able to achieve comparable or even better performance compared to full fine-tuning with only $\sim$2.5\% tunable parameters.The code and samples are available at: https://anonymous.4open.science/r/multilingualTTS-BA4C.
Abstract:Neural speech synthesis, or text-to-speech (TTS), aims to transform a signal from the text domain to the speech domain. While developing TTS architectures that train and test on the same set of speakers has seen significant improvements, out-of-domain speaker performance still faces enormous limitations. Domain adaptation on a new set of speakers can be achieved by fine-tuning the whole model for each new domain, thus making it parameter-inefficient. This problem can be solved by Adapters that provide a parameter-efficient alternative to domain adaptation. Although famous in NLP, speech synthesis has not seen much improvement from Adapters. In this work, we present HyperTTS, which comprises a small learnable network, "hypernetwork", that generates parameters of the Adapter blocks, allowing us to condition Adapters on speaker representations and making them dynamic. Extensive evaluations of two domain adaptation settings demonstrate its effectiveness in achieving state-of-the-art performance in the parameter-efficient regime. We also compare different variants of HyperTTS, comparing them with baselines in different studies. Promising results on the dynamic adaptation of adapter parameters using hypernetworks open up new avenues for domain-generic multi-speaker TTS systems. The audio samples and code are available at https://github.com/declare-lab/HyperTTS.
Abstract:Neural Text-to-Speech (TTS) systems find broad applications in voice assistants, e-learning, and audiobook creation. The pursuit of modern models, like Diffusion Models (DMs), holds promise for achieving high-fidelity, real-time speech synthesis. Yet, the efficiency of multi-step sampling in Diffusion Models presents challenges. Efforts have been made to integrate GANs with DMs, speeding up inference by approximating denoising distributions, but this introduces issues with model convergence due to adversarial training. To overcome this, we introduce CM-TTS, a novel architecture grounded in consistency models (CMs). Drawing inspiration from continuous-time diffusion models, CM-TTS achieves top-quality speech synthesis in fewer steps without adversarial training or pre-trained model dependencies. We further design weighted samplers to incorporate different sampling positions into model training with dynamic probabilities, ensuring unbiased learning throughout the entire training process. We present a real-time mel-spectrogram generation consistency model, validated through comprehensive evaluations. Experimental results underscore CM-TTS's superiority over existing single-step speech synthesis systems, representing a significant advancement in the field.
Abstract:Inverted landing is a routine behavior among a number of animal fliers. However, mastering this feat poses a considerable challenge for robotic fliers, especially to perform dynamic perching with rapid body rotations (or flips) and landing against gravity. Inverted landing in flies have suggested that optical flow senses are closely linked to the precise triggering and control of body flips that lead to a variety of successful landing behaviors. Building upon this knowledge, we aimed to replicate the flies' landing behaviors in small quadcopters by developing a control policy general to arbitrary ceiling-approach conditions. First, we employed reinforcement learning in simulation to optimize discrete sensory-motor pairs across a broad spectrum of ceiling-approach velocities and directions. Next, we converted the sensory-motor pairs to a two-stage control policy in a continuous augmented-optical flow space. The control policy consists of a first-stage Flip-Trigger Policy, which employs a one-class support vector machine, and a second-stage Flip-Action Policy, implemented as a feed-forward neural network. To transfer the inverted-landing policy to physical systems, we utilized domain randomization and system identification techniques for a zero-shot sim-to-real transfer. As a result, we successfully achieved a range of robust inverted-landing behaviors in small quadcopters, emulating those observed in flies.
Abstract:Continual Few-shot Relation Extraction (CFRE) is a practical problem that requires the model to continuously learn novel relations while avoiding forgetting old ones with few labeled training data. The primary challenges are catastrophic forgetting and overfitting. This paper harnesses prompt learning to explore the implicit capabilities of pre-trained language models to address the above two challenges, thereby making language models better continual few-shot relation extractors. Specifically, we propose a Contrastive Prompt Learning framework, which designs prompt representation to acquire more generalized knowledge that can be easily adapted to old and new categories, and margin-based contrastive learning to focus more on hard samples, therefore alleviating catastrophic forgetting and overfitting issues. To further remedy overfitting in low-resource scenarios, we introduce an effective memory augmentation strategy that employs well-crafted prompts to guide ChatGPT in generating diverse samples. Extensive experiments demonstrate that our method outperforms state-of-the-art methods by a large margin and significantly mitigates catastrophic forgetting and overfitting in low-resource scenarios.
Abstract:Query-based methods have garnered significant attention in object detection since the advent of DETR, the pioneering end-to-end query-based detector. However, these methods face challenges like slow convergence and suboptimal performance. Notably, self-attention in object detection often hampers convergence due to its global focus. To address these issues, we propose FoLR, a transformer-like architecture with only decoders. We enhance the self-attention mechanism by isolating connections between irrelevant objects that makes it focus on local regions but not global regions. We also design the adaptive sampling method to extract effective features based on queries' local regions from feature maps. Additionally, we employ a look-back strategy for decoders to retain prior information, followed by the Feature Mixer module to fuse features and queries. Experimental results demonstrate FoLR's state-of-the-art performance in query-based detectors, excelling in convergence speed and computational efficiency.
Abstract:Fish locomotion emerges from a diversity of interactions among deformable structures, surrounding fluids and neuromuscular activations, i.e., fluid-structure interactions (FSI) controlled by fish's motor systems. Previous studies suggested that such motor-controlled FSI may possess embodied traits. However, their implications in motor learning, neuromuscular control, gait generation, and swimming performance remain to be uncovered. Using robot models, we studied how swimming behaviours emerged from the FSI and the embodied traits. We developed modular robots with various designs and used Central Pattern Generators (CPGs) to control the torque acting on robot body. We used reinforcement learning to learn CPG parameters to maximize the swimming speed. The results showed that motor frequency converged faster than other parameters, and the emergent swimming gaits were robust against disruptions applied to motor control. For all robots and frequencies tested, swimming speed was proportional to the mean undulation velocity of body and caudal-fin combined, yielding an invariant, undulation-based Strouhal number. The Strouhal number also revealed two fundamental classes of undulatory swimming in both biological and robotic fishes. The robot actuators also demonstrated diverse functions as motors, virtual springs, and virtual masses. These results provide novel insights into the embodied traits of motor-controlled FSI for fish-inspired locomotion.