Abstract:With the rapid advancement and strong generalization capabilities of large language models (LLMs), they have been increasingly incorporated into the active learning pipelines as annotators to reduce annotation costs. However, considering the annotation quality, labels generated by LLMs often fall short of real-world applicability. To address this, we propose a novel active learning framework, Mixture of LLMs in the Loop Active Learning, replacing human annotators with labels generated through a Mixture-of-LLMs-based annotation model, aimed at enhancing LLM-based annotation robustness by aggregating the strengths of multiple LLMs. To further mitigate the impact of the noisy labels, we introduce annotation discrepancy and negative learning to identify the unreliable annotations and enhance learning effectiveness. Extensive experiments demonstrate that our framework achieves performance comparable to human annotation and consistently outperforms single-LLM baselines and other LLM-ensemble-based approaches. Moreover, our framework is built on lightweight LLMs, enabling it to operate fully on local machines in real-world applications.
Abstract:The primary challenge of multi-label active learning, differing it from multi-class active learning, lies in assessing the informativeness of an indefinite number of labels while also accounting for the inherited label correlation. Existing studies either require substantial computational resources to leverage correlations or fail to fully explore label dependencies. Additionally, real-world scenarios often require addressing intrinsic biases stemming from imbalanced data distributions. In this paper, we propose a new multi-label active learning strategy to address both challenges. Our method incorporates progressively updated positive and negative correlation matrices to capture co-occurrence and disjoint relationships within the label space of annotated samples, enabling a holistic assessment of uncertainty rather than treating labels as isolated elements. Furthermore, alongside diversity, our model employs ensemble pseudo labeling and beta scoring rules to address data imbalances. Extensive experiments on four realistic datasets demonstrate that our strategy consistently achieves more reliable and superior performance, compared to several established methods.