Abstract:With the rapid advancement and strong generalization capabilities of large language models (LLMs), they have been increasingly incorporated into the active learning pipelines as annotators to reduce annotation costs. However, considering the annotation quality, labels generated by LLMs often fall short of real-world applicability. To address this, we propose a novel active learning framework, Mixture of LLMs in the Loop Active Learning, replacing human annotators with labels generated through a Mixture-of-LLMs-based annotation model, aimed at enhancing LLM-based annotation robustness by aggregating the strengths of multiple LLMs. To further mitigate the impact of the noisy labels, we introduce annotation discrepancy and negative learning to identify the unreliable annotations and enhance learning effectiveness. Extensive experiments demonstrate that our framework achieves performance comparable to human annotation and consistently outperforms single-LLM baselines and other LLM-ensemble-based approaches. Moreover, our framework is built on lightweight LLMs, enabling it to operate fully on local machines in real-world applications.
Abstract:With the widespread application of LLM-based dialogue systems in daily life, quality assurance has become more important than ever. Recent research has successfully introduced methods to identify unexpected behaviour in single-turn scenarios. However, multi-turn dialogue testing remains underexplored, with the Oracle problem in multi-turn testing posing a persistent challenge for dialogue system developers and researchers. In this paper, we propose MORTAR, a MetamORphic multi-TuRn diAlogue testing appRoach, which mitigates the test oracle problem in the assessment of LLM-based dialogue systems. MORTAR automates the generation of follow-up question-answer (QA) dialogue test cases with multiple dialogue-level perturbations and metamorphic relations. MORTAR employs a novel knowledge graph-based dialogue information model which effectively generates perturbed dialogue test datasets and detects bugs of multi-turn dialogue systems in a low-cost manner. The proposed approach does not require an LLM as a judge, eliminating potential of any biases in the evaluation step. According to the experiment results on multiple LLM-based dialogue systems and comparisons with single-turn metamorphic testing approaches, MORTAR explores more unique bugs in LLM-based dialogue systems, especially for severe bugs that MORTAR detects up to four times more unique bugs than the most effective existing metamorphic testing approach.