Abstract:Camouflaged object detection (COD) primarily relies on semantic or instance segmentation methods. While these methods have made significant advancements in identifying the contours of camouflaged objects, they may be inefficient or cost-effective for tasks that only require the specific location of the object. Object detection algorithms offer an optimized solution for Realistic Camouflaged Object Detection (RCOD) in such cases. However, detecting camouflaged objects remains a formidable challenge due to the high degree of similarity between the features of the objects and their backgrounds. Unlike segmentation methods that perform pixel-wise comparisons to differentiate between foreground and background, object detectors omit this analysis, further aggravating the challenge. To solve this problem, we propose a camouflage-aware feature refinement (CAFR) strategy. Since camouflaged objects are not rare categories, CAFR fully utilizes a clear perception of the current object within the prior knowledge of large models to assist detectors in deeply understanding the distinctions between background and foreground. Specifically, in CAFR, we introduce the Adaptive Gradient Propagation (AGP) module that fine-tunes all feature extractor layers in large detection models to fully refine class-specific features from camouflaged contexts. We then design the Sparse Feature Refinement (SFR) module that optimizes the transformer-based feature extractor to focus primarily on capturing class-specific features in camouflaged scenarios. To facilitate the assessment of RCOD tasks, we manually annotate the labels required for detection on three existing segmentation COD datasets, creating a new benchmark for RCOD tasks. Code and datasets are available at: https://github.com/zhimengXin/RCOD.
Abstract:Zero-shot learning (ZSL) aims to leverage additional semantic information to recognize unseen classes. To transfer knowledge from seen to unseen classes, most ZSL methods often learn a shared embedding space by simply aligning visual embeddings with semantic prototypes. However, methods trained under this paradigm often struggle to learn robust embedding space because they align the two modalities in an isolated manner among classes, which ignore the crucial class relationship during the alignment process. To address the aforementioned challenges, this paper proposes a Visual-Semantic Graph Matching Net, termed as VSGMN, which leverages semantic relationships among classes to aid in visual-semantic embedding. VSGMN employs a Graph Build Network (GBN) and a Graph Matching Network (GMN) to achieve two-stage visual-semantic alignment. Specifically, GBN first utilizes an embedding-based approach to build visual and semantic graphs in the semantic space and align the embedding with its prototype for first-stage alignment. Additionally, to supplement unseen class relations in these graphs, GBN also build the unseen class nodes based on semantic relationships. In the second stage, GMN continuously integrates neighbor and cross-graph information into the constructed graph nodes, and aligns the node relationships between the two graphs under the class relationship constraint. Extensive experiments on three benchmark datasets demonstrate that VSGMN achieves superior performance in both conventional and generalized ZSL scenarios. The implementation of our VSGMN and experimental results are available at github: https://github.com/dbwfd/VSGMN
Abstract:Large Language Models (LLMs) have revolutionized natural language processing, but their susceptibility to biases poses significant challenges. This comprehensive review examines the landscape of bias in LLMs, from its origins to current mitigation strategies. We categorize biases as intrinsic and extrinsic, analyzing their manifestations in various NLP tasks. The review critically assesses a range of bias evaluation methods, including data-level, model-level, and output-level approaches, providing researchers with a robust toolkit for bias detection. We further explore mitigation strategies, categorizing them into pre-model, intra-model, and post-model techniques, highlighting their effectiveness and limitations. Ethical and legal implications of biased LLMs are discussed, emphasizing potential harms in real-world applications such as healthcare and criminal justice. By synthesizing current knowledge on bias in LLMs, this review contributes to the ongoing effort to develop fair and responsible AI systems. Our work serves as a comprehensive resource for researchers and practitioners working towards understanding, evaluating, and mitigating bias in LLMs, fostering the development of more equitable AI technologies.
Abstract:Diffusion models have made significant strides in language-driven and layout-driven image generation. However, most diffusion models are limited to visible RGB image generation. In fact, human perception of the world is enriched by diverse viewpoints, including chromatic contrast, thermal illumination, and depth information. In this paper, we introduce a novel diffusion model for general layout-guided cross-modal ``RGB+X'' generation, called DiffX. Firstly, we construct the cross-modal image datasets with text description by using LLaVA for image captioning, supplemented by manual corrections. Notably, DiffX presents a simple yet effective cross-modal generative modeling pipeline, which conducts diffusion and denoising processes in the modality-shared latent space, facilitated by our Dual Path Variational AutoEncoder (DP-VAE). Moreover, we introduce the joint-modality embedder, which incorporates a gated cross-attention mechanism to link layout and text conditions. Meanwhile, the advanced Long-CLIP is employed for long caption embedding to improve user guidance. Through extensive experiments, DiffX demonstrates robustness and flexibility in cross-modal generation across three RGB+X datasets: FLIR, MFNet, and COME15K, guided by various layout types. It also shows the potential for adaptive generation of ``RGB+X+Y'' or more diverse modalities. Our code and constructed cross-modal image datasets are available at https://github.com/zeyuwang-zju/DiffX.
Abstract:This study introduces a novel Remote Sensing (RS) Urban Prediction (UP) task focused on future urban planning, which aims to forecast urban layouts by utilizing information from existing urban layouts and planned change maps. To address the proposed RS UP task, we propose UP-Diff, which leverages a Latent Diffusion Model (LDM) to capture positionaware embeddings of pre-change urban layouts and planned change maps. In specific, the trainable cross-attention layers within UP-Diff's iterative diffusion modules enable the model to dynamically highlight crucial regions for targeted modifications. By utilizing our UP-Diff, designers can effectively refine and adjust future urban city plans by making modifications to the change maps in a dynamic and adaptive manner. Compared with conventional RS Change Detection (CD) methods, the proposed UP-Diff for the RS UP task avoids the requirement of paired prechange and post-change images, which enhances the practical usage in city development. Experimental results on LEVIRCD and SYSU-CD datasets show UP-Diff's ability to accurately predict future urban layouts with high fidelity, demonstrating its potential for urban planning. Code and model weights will be available upon the acceptance of the work.
Abstract:The Spiking Neural Network (SNN) is a biologically inspired neural network infrastructure that has recently garnered significant attention. It utilizes binary spike activations to transmit information, thereby replacing multiplications with additions and resulting in high energy efficiency. However, training an SNN directly poses a challenge due to the undefined gradient of the firing spike process. Although prior works have employed various surrogate gradient training methods that use an alternative function to replace the firing process during back-propagation, these approaches ignore an intrinsic problem: gradient vanishing. To address this issue, we propose a shortcut back-propagation method in our paper, which advocates for transmitting the gradient directly from the loss to the shallow layers. This enables us to present the gradient to the shallow layers directly, thereby significantly mitigating the gradient vanishing problem. Additionally, this method does not introduce any burden during the inference phase. To strike a balance between final accuracy and ease of training, we also propose an evolutionary training framework and implement it by inducing a balance coefficient that dynamically changes with the training epoch, which further improves the network's performance. Extensive experiments conducted over static and dynamic datasets using several popular network structures reveal that our method consistently outperforms state-of-the-art methods.
Abstract:The Spiking Neural Network (SNN), as one of the biologically inspired neural network infrastructures, has drawn increasing attention recently. It adopts binary spike activations to transmit information, thus the multiplications of activations and weights can be substituted by additions, which brings high energy efficiency. However, in the paper, we theoretically and experimentally prove that the binary spike activation map cannot carry enough information, thus causing information loss and resulting in accuracy decreasing. To handle the problem, we propose a ternary spike neuron to transmit information. The ternary spike neuron can also enjoy the event-driven and multiplication-free operation advantages of the binary spike neuron but will boost the information capacity. Furthermore, we also embed a trainable factor in the ternary spike neuron to learn the suitable spike amplitude, thus our SNN will adopt different spike amplitudes along layers, which can better suit the phenomenon that the membrane potential distributions are different along layers. To retain the efficiency of the vanilla ternary spike, the trainable ternary spike SNN will be converted to a standard one again via a re-parameterization technique in the inference. Extensive experiments with several popular network structures over static and dynamic datasets show that the ternary spike can consistently outperform state-of-the-art methods. Our code is open-sourced at https://github.com/yfguo91/Ternary-Spike.
Abstract:Recently, Spiking Neural Networks (SNNs), enjoying extreme energy efficiency, have drawn much research attention on 2D visual recognition and shown gradually increasing application potential. However, it still remains underexplored whether SNNs can be generalized to 3D recognition. To this end, we present Spiking PointNet in the paper, the first spiking neural model for efficient deep learning on point clouds. We discover that the two huge obstacles limiting the application of SNNs in point clouds are: the intrinsic optimization obstacle of SNNs that impedes the training of a big spiking model with large time steps, and the expensive memory and computation cost of PointNet that makes training a big spiking point model unrealistic. To solve the problems simultaneously, we present a trained-less but learning-more paradigm for Spiking PointNet with theoretical justifications and in-depth experimental analysis. In specific, our Spiking PointNet is trained with only a single time step but can obtain better performance with multiple time steps inference, compared to the one trained directly with multiple time steps. We conduct various experiments on ModelNet10, ModelNet40 to demonstrate the effectiveness of Spiking PointNet. Notably, our Spiking PointNet even can outperform its ANN counterpart, which is rare in the SNN field thus providing a potential research direction for the following work. Moreover, Spiking PointNet shows impressive speedup and storage saving in the training phase.
Abstract:Large language models (LLMs) have recently driven striking performance improvements across a range of natural language processing tasks. The factual knowledge acquired during pretraining and instruction tuning can be useful in various downstream tasks, such as question answering, and language generation. Unlike conventional Knowledge Bases (KBs) that explicitly store factual knowledge, LLMs implicitly store facts in their parameters. Content generated by the LLMs can often exhibit inaccuracies or deviations from the truth, due to facts that can be incorrectly induced or become obsolete over time. To this end, we aim to comprehensively evaluate the extent and scope of factual knowledge within LLMs by designing the benchmark Pinocchio. Pinocchio contains 20K diverse factual questions that span different sources, timelines, domains, regions, and languages. Furthermore, we investigate whether LLMs are able to compose multiple facts, update factual knowledge temporally, reason over multiple pieces of facts, identify subtle factual differences, and resist adversarial examples. Extensive experiments on different sizes and types of LLMs show that existing LLMs still lack factual knowledge and suffer from various spurious correlations. We believe this is a critical bottleneck for realizing trustworthy artificial intelligence. The dataset Pinocchio and our codes will be publicly available.
Abstract:As one of the energy-efficient alternatives of conventional neural networks (CNNs), spiking neural networks (SNNs) have gained more and more interest recently. To train the deep models, some effective batch normalization (BN) techniques are proposed in SNNs. All these BNs are suggested to be used after the convolution layer as usually doing in CNNs. However, the spiking neuron is much more complex with the spatio-temporal dynamics. The regulated data flow after the BN layer will be disturbed again by the membrane potential updating operation before the firing function, i.e., the nonlinear activation. Therefore, we advocate adding another BN layer before the firing function to normalize the membrane potential again, called MPBN. To eliminate the induced time cost of MPBN, we also propose a training-inference-decoupled re-parameterization technique to fold the trained MPBN into the firing threshold. With the re-parameterization technique, the MPBN will not introduce any extra time burden in the inference. Furthermore, the MPBN can also adopt the element-wised form, while these BNs after the convolution layer can only use the channel-wised form. Experimental results show that the proposed MPBN performs well on both popular non-spiking static and neuromorphic datasets. Our code is open-sourced at \href{https://github.com/yfguo91/MPBN}{MPBN}.