Abstract:Generative artificial intelligence holds significant potential for abuse, and generative image detection has become a key focus of research. However, existing methods primarily focused on detecting a specific generative model and emphasizing the localization of synthetic regions, while neglecting the interference caused by image size and style on model learning. Our goal is to reach a fundamental conclusion: Is the image real or generated? To this end, we propose a diffusion model-based generative image detection framework termed Hierarchical Retrospection Refinement~(HRR). It designs a multi-scale style retrospection module that encourages the model to generate detailed and realistic multi-scale representations, while alleviating the learning biases introduced by dataset styles and generative models. Additionally, based on the principle of correntropy sparse additive machine, a feature refinement module is designed to reduce the impact of redundant features on learning and capture the intrinsic structure and patterns of the data, thereby improving the model's generalization ability. Extensive experiments demonstrate the HRR framework consistently delivers significant performance improvements, outperforming state-of-the-art methods in generated image detection task.
Abstract:Camouflaged object detection (COD) primarily relies on semantic or instance segmentation methods. While these methods have made significant advancements in identifying the contours of camouflaged objects, they may be inefficient or cost-effective for tasks that only require the specific location of the object. Object detection algorithms offer an optimized solution for Realistic Camouflaged Object Detection (RCOD) in such cases. However, detecting camouflaged objects remains a formidable challenge due to the high degree of similarity between the features of the objects and their backgrounds. Unlike segmentation methods that perform pixel-wise comparisons to differentiate between foreground and background, object detectors omit this analysis, further aggravating the challenge. To solve this problem, we propose a camouflage-aware feature refinement (CAFR) strategy. Since camouflaged objects are not rare categories, CAFR fully utilizes a clear perception of the current object within the prior knowledge of large models to assist detectors in deeply understanding the distinctions between background and foreground. Specifically, in CAFR, we introduce the Adaptive Gradient Propagation (AGP) module that fine-tunes all feature extractor layers in large detection models to fully refine class-specific features from camouflaged contexts. We then design the Sparse Feature Refinement (SFR) module that optimizes the transformer-based feature extractor to focus primarily on capturing class-specific features in camouflaged scenarios. To facilitate the assessment of RCOD tasks, we manually annotate the labels required for detection on three existing segmentation COD datasets, creating a new benchmark for RCOD tasks. Code and datasets are available at: https://github.com/zhimengXin/RCOD.