IBM T.J. Watson Research Center
Abstract:Large Language Models (LLMs) have revolutionized natural language processing, but their susceptibility to biases poses significant challenges. This comprehensive review examines the landscape of bias in LLMs, from its origins to current mitigation strategies. We categorize biases as intrinsic and extrinsic, analyzing their manifestations in various NLP tasks. The review critically assesses a range of bias evaluation methods, including data-level, model-level, and output-level approaches, providing researchers with a robust toolkit for bias detection. We further explore mitigation strategies, categorizing them into pre-model, intra-model, and post-model techniques, highlighting their effectiveness and limitations. Ethical and legal implications of biased LLMs are discussed, emphasizing potential harms in real-world applications such as healthcare and criminal justice. By synthesizing current knowledge on bias in LLMs, this review contributes to the ongoing effort to develop fair and responsible AI systems. Our work serves as a comprehensive resource for researchers and practitioners working towards understanding, evaluating, and mitigating bias in LLMs, fostering the development of more equitable AI technologies.
Abstract:In many applications of time series models, such as climate analysis and social media analysis, we are often interested in extreme events, such as heatwave, wind gust, and burst of topics. These time series data usually exhibit a heavy-tailed distribution rather than a Gaussian distribution. This poses great challenges to existing approaches due to the significantly different assumptions on the data distributions and the lack of sufficient past data on extreme events. In this paper, we propose the Sparse-GEV model, a latent state model based on the theory of extreme value modeling to automatically learn sparse temporal dependence and make predictions. Our model is theoretically significant because it is among the first models to learn sparse temporal dependencies among multivariate extreme value time series. We demonstrate the superior performance of our algorithm to the state-of-art methods, including Granger causality, copula approach, and transfer entropy, on one synthetic dataset, one climate dataset and two Twitter datasets.