Abstract:Dialogue topic segmentation plays a crucial role in various types of dialogue modeling tasks. The state-of-the-art unsupervised DTS methods learn topic-aware discourse representations from conversation data through adjacent discourse matching and pseudo segmentation to further mine useful clues in unlabeled conversational relations. However, in multi-round dialogs, discourses often have co-references or omissions, leading to the fact that direct use of these discourses for representation learning may negatively affect the semantic similarity computation in the neighboring discourse matching task. In order to fully utilize the useful cues in conversational relations, this study proposes a novel unsupervised dialog topic segmentation method that combines the Utterance Rewriting (UR) technique with an unsupervised learning algorithm to efficiently utilize the useful cues in unlabeled dialogs by rewriting the dialogs in order to recover the co-referents and omitted words. Compared with existing unsupervised models, the proposed Discourse Rewriting Topic Segmentation Model (UR-DTS) significantly improves the accuracy of topic segmentation. The main finding is that the performance on DialSeg711 improves by about 6% in terms of absolute error score and WD, achieving 11.42% in terms of absolute error score and 12.97% in terms of WD. on Doc2Dial the absolute error score and WD improves by about 3% and 2%, respectively, resulting in SOTA reaching 35.17% in terms of absolute error score and 38.49% in terms of WD. This shows that the model is very effective in capturing the nuances of conversational topics, as well as the usefulness and challenges of utilizing unlabeled conversations.
Abstract:Instruction tuning as an effective technique aligns the outputs of large language models (LLMs) with human preference. But how to generate the seasonal multi-turn dialogues from raw documents for instruction tuning still requires further exploration. In this paper, we present a novel framework named R2S that leverages the CoD-Chain of Dialogue logic to guide large language models (LLMs) in generating knowledge-intensive multi-turn dialogues for instruction tuning. By integrating raw documents from both open-source datasets and domain-specific web-crawled documents into a benchmark K-BENCH, we cover diverse areas such as Wikipedia (English), Science (Chinese), and Artifacts (Chinese). Our approach first decides the logic flow of the current dialogue and then prompts LLMs to produce key phrases for sourcing relevant response content. This methodology enables the creation of the G I NSTRUCT instruction dataset, retaining raw document knowledge within dialoguestyle interactions. Utilizing this dataset, we fine-tune GLLM, a model designed to transform raw documents into structured multi-turn dialogues, thereby injecting comprehensive domain knowledge into the SFT model for enhanced instruction tuning. This work signifies a stride towards refining the adaptability and effectiveness of LLMs in processing and generating more accurate, contextually nuanced responses across various fields.
Abstract:In an era marked by the rapid scaling of foundation models, autonomous driving technologies are approaching a transformative threshold where end-to-end autonomous driving (E2E-AD) emerges due to its potential of scaling up in the data-driven manner. However, existing E2E-AD methods are mostly evaluated under the open-loop log-replay manner with L2 errors and collision rate as metrics (e.g., in nuScenes), which could not fully reflect the driving performance of algorithms as recently acknowledged in the community. For those E2E-AD methods evaluated under the closed-loop protocol, they are tested in fixed routes (e.g., Town05Long and Longest6 in CARLA) with the driving score as metrics, which is known for high variance due to the unsmoothed metric function and large randomness in the long route. Besides, these methods usually collect their own data for training, which makes algorithm-level fair comparison infeasible. To fulfill the paramount need of comprehensive, realistic, and fair testing environments for Full Self-Driving (FSD), we present Bench2Drive, the first benchmark for evaluating E2E-AD systems' multiple abilities in a closed-loop manner. Bench2Drive's official training data consists of 2 million fully annotated frames, collected from 10000 short clips uniformly distributed under 44 interactive scenarios (cut-in, overtaking, detour, etc), 23 weathers (sunny, foggy, rainy, etc), and 12 towns (urban, village, university, etc) in CARLA v2. Its evaluation protocol requires E2E-AD models to pass 44 interactive scenarios under different locations and weathers which sums up to 220 routes and thus provides a comprehensive and disentangled assessment about their driving capability under different situations. We implement state-of-the-art E2E-AD models and evaluate them in Bench2Drive, providing insights regarding current status and future directions.
Abstract:Real-world autonomous driving (AD) especially urban driving involves many corner cases. The lately released AD simulator CARLA v2 adds 39 common events in the driving scene, and provide more quasi-realistic testbed compared to CARLA v1. It poses new challenge to the community and so far no literature has reported any success on the new scenarios in V2 as existing works mostly have to rely on specific rules for planning yet they cannot cover the more complex cases in CARLA v2. In this work, we take the initiative of directly training a planner and the hope is to handle the corner cases flexibly and effectively, which we believe is also the future of AD. To our best knowledge, we develop the first model-based RL method named Think2Drive for AD, with a world model to learn the transitions of the environment, and then it acts as a neural simulator to train the planner. This paradigm significantly boosts the training efficiency due to the low dimensional state space and parallel computing of tensors in the world model. As a result, Think2Drive is able to run in an expert-level proficiency in CARLA v2 within 3 days of training on a single A6000 GPU, and to our best knowledge, so far there is no reported success (100\% route completion)on CARLA v2. We also propose CornerCase-Repository, a benchmark that supports the evaluation of driving models by scenarios. Additionally, we propose a new and balanced metric to evaluate the performance by route completion, infraction number, and scenario density, so that the driving score could give more information about the actual driving performance.
Abstract:Temporal Action Segmentation (TAS) from video is a kind of frame recognition task for long video with multiple action classes. As an video understanding task for long videos, current methods typically combine multi-modality action recognition models with temporal models to convert feature sequences to label sequences. This approach can only be applied to offline scenarios, which severely limits the TAS application. Therefore, this paper proposes an end-to-end Streaming Video Temporal Action Segmentation with Reinforce Learning (SVTAS-RL). The end-to-end SVTAS which regard TAS as an action segment clustering task can expand the application scenarios of TAS; and RL is used to alleviate the problem of inconsistent optimization objective and direction. Through extensive experiments, the SVTAS-RL model achieves a competitive performance to the state-of-the-art model of TAS on multiple datasets, and shows greater advantages on the ultra-long video dataset EGTEA. This indicates that our method can replace all current TAS models end-to-end and SVTAS-RL is more suitable for long video TAS. Code is availabel at https://github.com/Thinksky5124/SVTAS.
Abstract:In this paper, we propose a novel gait recognition method based on a bag-of-words feature representation method. The algorithm is trained, tested and evaluated on a unique human gait data consisting of 93 individuals who walked with comfortable pace between two end points during two different sessions. To evaluate the effectiveness of the proposed model, the results are compared with the outputs of the classification using extracted features. As it is presented, the proposed method results in significant improvement accuracy compared to using common statistical features, in all the used classifiers.
Abstract:The multi-period dynamics of energy storage (ES), intermittent renewable generation and uncontrollable power loads, make the optimization of power system operation (PSO) challenging. A multi-period optimal PSO under uncertainty is formulated using the chance-constrained optimization (CCO) modeling paradigm, where the constraints include the nonlinear energy storage and AC power flow models. Based on the emerging scenario optimization method which does not rely on pre-known probability distribution functions, this paper develops a novel solution method for this challenging CCO problem. The proposed meth-od is computationally effective for mainly two reasons. First, the original AC power flow constraints are approximated by a set of learning-assisted quadratic convex inequalities based on a generalized least absolute shrinkage and selection operator. Second, considering the physical patterns of data and motived by learning-based sampling, the strategic sampling method is developed to significantly reduce the required number of scenarios through different sampling strategies. The simulation results on IEEE standard systems indicate that 1) the proposed strategic sampling significantly improves the computational efficiency of the scenario-based approach for solving the chance-constrained optimal PSO problem, 2) the data-driven convex approximation of power flow can be promising alternatives of nonlinear and nonconvex AC power flow.
Abstract:This paper proposes an ensemble learning based approach for convexifying AC power flow equations, which differs from the existing relaxation-based convexification techniques. The proposed approach is based on the quadratic power flow equations in rectangular coordinates. To develop this data-driven convex model of power flow, the polynomial regression (PR) is first deployed as a basic learner to fit convex relationships between the independent and dependent variables. Then, ensemble learning algorithms, i.e. gradient boosting (GB) and bagging, are introduced to combine learners to boost model performance. Based on the learned convex models of power flow, optimal power flow (OPF) is formulated as a convex quadratic programming problem. The simulation results on IEEE standard cases illustrate that, 1) GB outperforms PR and bagging on the prediction accuracy, 2) in context of solving OPF, the proposed data-driven convex model outperforms the conventional SDP relaxation in both accuracy and computational efficiency.