Abstract:Question Answering (QA) over Knowledge Base (KB) aims to automatically answer natural language questions via well-structured relation information between entities stored in knowledge bases. In order to make KBQA more applicable in actual scenarios, researchers have shifted their attention from simple questions to complex questions, which require more KB triples and constraint inference. In this paper, we introduce the recent advances in complex QA. Besides traditional methods relying on templates and rules, the research is categorized into a taxonomy that contains two main branches, namely Information Retrieval-based and Neural Semantic Parsing-based. After describing the methods of these branches, we analyze directions for future research and introduce the models proposed by the Alime team.
Abstract:We present graph wavelet neural network (GWNN), a novel graph convolutional neural network (CNN), leveraging graph wavelet transform to address the shortcomings of previous spectral graph CNN methods that depend on graph Fourier transform. Different from graph Fourier transform, graph wavelet transform can be obtained via a fast algorithm without requiring matrix eigendecomposition with high computational cost. Moreover, graph wavelets are sparse and localized in vertex domain, offering high efficiency and good interpretability for graph convolution. The proposed GWNN significantly outperforms previous spectral graph CNNs in the task of graph-based semi-supervised classification on three benchmark datasets: Cora, Citeseer and Pubmed.