Abstract:Large language models (LLMs) have become increasingly proficient at simulating various personality traits, an important capability for supporting related applications (e.g., role-playing). To further improve this capacity, in this paper, we present a neuron-based approach for personality trait induction in LLMs, with three major technical contributions. First, we construct PersonalityBench, a large-scale dataset for identifying and evaluating personality traits in LLMs. This dataset is grounded in the Big Five personality traits from psychology and is designed to assess the generative capabilities of LLMs towards specific personality traits. Second, by leveraging PersonalityBench, we propose an efficient method for identifying personality-related neurons within LLMs by examining the opposite aspects of a given trait. Third, we develop a simple yet effective induction method that manipulates the values of these identified personality-related neurons. This method enables fine-grained control over the traits exhibited by LLMs without training and modifying model parameters. Extensive experiments validate the efficacy of our neuron identification and trait induction methods. Notably, our approach achieves comparable performance as fine-tuned models, offering a more efficient and flexible solution for personality trait induction in LLMs. We provide access to all the mentioned resources at https://github.com/RUCAIBox/NPTI.
Abstract:Deep Learners (DLs) are the state-of-art predictive mechanism with applications in many fields requiring complex high dimensional data processing. Although conventional DLs get trained via gradient descent with back-propagation, Kalman Filter (KF)-based techniques that do not need gradient computation have been developed to approximate DLs. We propose a multi-arm extension of a KF-based DL approximator that can mimic DL when the sample size is too small to train a multi-arm DL. The proposed Matrix Ensemble Kalman Filter-based multi-arm ANN (MEnKF-ANN) also performs explicit model stacking that becomes relevant when the training sample has an unequal-size feature set. Our proposed technique can approximate Long Short-term Memory (LSTM) Networks and attach uncertainty to the predictions obtained from these LSTMs with desirable coverage. We demonstrate how MEnKF-ANN can "adequately" approximate an LSTM network trained to classify what carbohydrate substrates are digested and utilized by a microbiome sample whose genomic sequences consist of polysaccharide utilization loci (PULs) and their encoded genes.