Abstract:Recent years have witnessed substantial progress on monocular depth estimation, particularly as measured by the success of large models on standard benchmarks. However, performance on standard benchmarks does not offer a complete assessment, because most evaluate accuracy but not robustness. In this work, we introduce PDE (Procedural Depth Evaluation), a new benchmark which enables systematic robustness evaluation. PDE uses procedural generation to create 3D scenes that test robustness to various controlled perturbations, including object, camera, material and lighting changes. Our analysis yields interesting findings on what perturbations are challenging for state-of-the-art depth models, which we hope will inform further research. Code and data are available at https://github.com/princeton-vl/proc-depth-eval.
Abstract:We introduce Warping-Alone Field Transforms (WAFT), a simple and effective method for optical flow. WAFT is similar to RAFT but replaces cost volume with high-resolution warping, achieving better accuracy with lower memory cost. This design challenges the conventional wisdom that constructing cost volumes is necessary for strong performance. WAFT is a simple and flexible meta-architecture with minimal inductive biases and reliance on custom designs. Compared with existing methods, WAFT ranks 1st on Spring and KITTI benchmarks, achieves the best zero-shot generalization on KITTI, while being up to 4.1x faster than methods with similar performance. Code and model weights are available at https://github.com/princeton-vl/WAFT.
Abstract:We introduce Princeton365, a large-scale diverse dataset of 365 videos with accurate camera pose. Our dataset bridges the gap between accuracy and data diversity in current SLAM benchmarks by introducing a novel ground truth collection framework that leverages calibration boards and a 360-camera. We collect indoor, outdoor, and object scanning videos with synchronized monocular and stereo RGB video outputs as well as IMU. We further propose a new scene scale-aware evaluation metric for SLAM based on the the optical flow induced by the camera pose estimation error. In contrast to the current metrics, our new metric allows for comparison between the performance of SLAM methods across scenes as opposed to existing metrics such as Average Trajectory Error (ATE), allowing researchers to analyze the failure modes of their methods. We also propose a challenging Novel View Synthesis benchmark that covers cases not covered by current NVS benchmarks, such as fully non-Lambertian scenes with 360-degree camera trajectories. Please visit https://princeton365.cs.princeton.edu for the dataset, code, videos, and submission.
Abstract:Retrieval-augmented generation (RAG) systems have advanced large language models (LLMs) in complex deep search scenarios requiring multi-step reasoning and iterative information retrieval. However, existing approaches face critical limitations that lack high-quality training trajectories or suffer from the distributional mismatches in simulated environments and prohibitive computational costs for real-world deployment. This paper introduces SimpleDeepSearcher, a lightweight yet effective framework that bridges this gap through strategic data engineering rather than complex training paradigms. Our approach synthesizes high-quality training data by simulating realistic user interactions in live web search environments, coupled with a multi-criteria curation strategy that optimizes the diversity and quality of input and output side. Experiments on five benchmarks across diverse domains demonstrate that SFT on only 871 curated samples yields significant improvements over RL-based baselines. Our work establishes SFT as a viable pathway by systematically addressing the data-scarce bottleneck, offering practical insights for efficient deep search systems. Our code is available at https://github.com/RUCAIBox/SimpleDeepSearcher.
Abstract:Generalizing control policies to novel embodiments remains a fundamental challenge in enabling scalable and transferable learning in robotics. While prior works have explored this in locomotion, a systematic study in the context of manipulation tasks remains limited, partly due to the lack of standardized benchmarks. In this paper, we introduce a benchmark for learning cross-embodiment manipulation, focusing on two foundational tasks-reach and push-across a diverse range of morphologies. The benchmark is designed to test generalization along three axes: interpolation (testing performance within a robot category that shares the same link structure), extrapolation (testing on a robot with a different link structure), and composition (testing on combinations of link structures). On the benchmark, we evaluate the ability of different RL policies to learn from multiple morphologies and to generalize to novel ones. Our study aims to answer whether morphology-aware training can outperform single-embodiment baselines, whether zero-shot generalization to unseen morphologies is feasible, and how consistently these patterns hold across different generalization regimes. The results highlight the current limitations of multi-embodiment learning and provide insights into how architectural and training design choices influence policy generalization.
Abstract:We introduce Infinigen-Sim, a toolkit which enables users to create diverse and realistic articulated object procedural generators. These tools are composed of high-level utilities for use creating articulated assets in Blender, as well as an export pipeline to integrate the resulting assets into common robotics simulators. We demonstrate our system by creating procedural generators for 5 common articulated object categories. Experiments show that assets sampled from these generators are useful for movable object segmentation, training generalizable reinforcement learning policies, and sim-to-real transfer of imitation learning policies.
Abstract:Tactile sensing is an important sensing modality for robot manipulation. Among different types of tactile sensors, magnet-based sensors, like u-skin, balance well between high durability and tactile density. However, the large sim-to-real gap of tactile sensors prevents robots from acquiring useful tactile-based manipulation skills from simulation data, a recipe that has been successful for achieving complex and sophisticated control policies. Prior work has implemented binarization techniques to bridge the sim-to-real gap for dexterous in-hand manipulation. However, binarization inherently loses much information that is useful in many other tasks, e.g., insertion. In our work, we propose GCS, a novel sim-to-real technique to learn contact-rich skills with dense, distributed, 3-axis tactile readings. We evaluate our approach on blind insertion tasks and show zero-shot sim-to-real transfer of RL policies with raw tactile reading as input.
Abstract:Synthetic datasets are a crucial ingredient for training stereo matching networks, but the question of what makes a stereo dataset effective remains largely unexplored. We investigate the design space of synthetic datasets by varying the parameters of a procedural dataset generator, and report the effects on zero-shot stereo matching performance using standard benchmarks. We collect the best settings to produce Infinigen-Stereo, a procedural generator specifically optimized for zero-shot stereo datasets. Models trained only on data from our system outperform robust baselines trained on a combination of existing synthetic datasets and have stronger zero-shot stereo matching performance than public checkpoints from prior works. We open source our system at https://github.com/princeton-vl/InfinigenStereo to enable further research on procedural stereo datasets.
Abstract:Transparent objects are common in daily life, and understanding their multi-layer depth information -- perceiving both the transparent surface and the objects behind it -- is crucial for real-world applications that interact with transparent materials. In this paper, we introduce LayeredDepth, the first dataset with multi-layer depth annotations, including a real-world benchmark and a synthetic data generator, to support the task of multi-layer depth estimation. Our real-world benchmark consists of 1,500 images from diverse scenes, and evaluating state-of-the-art depth estimation methods on it reveals that they struggle with transparent objects. The synthetic data generator is fully procedural and capable of providing training data for this task with an unlimited variety of objects and scene compositions. Using this generator, we create a synthetic dataset with 15,300 images. Baseline models training solely on this synthetic dataset produce good cross-domain multi-layer depth estimation. Fine-tuning state-of-the-art single-layer depth models on it substantially improves their performance on transparent objects, with quadruplet accuracy on our benchmark increased from 55.14% to 75.20%. All images and validation annotations are available under CC0 at https://layereddepth.cs.princeton.edu.
Abstract:Effective pre-training of large language models (LLMs) has been challenging due to the immense resource demands and the complexity of the technical processes involved. This paper presents a detailed technical report on YuLan-Mini, a highly capable base model with 2.42B parameters that achieves top-tier performance among models of similar parameter scale. Our pre-training approach focuses on enhancing training efficacy through three key technical contributions: an elaborate data pipeline combines data cleaning with data schedule strategies, a robust optimization method to mitigate training instability, and an effective annealing approach that incorporates targeted data selection and long context training. Remarkably, YuLan-Mini, trained on 1.08T tokens, achieves performance comparable to industry-leading models that require significantly more data. To facilitate reproduction, we release the full details of the data composition for each training phase. Project details can be accessed at the following link: https://github.com/RUC-GSAI/YuLan-Mini.