Abstract:Building a foundation model for 3D vision is a complex challenge that remains unsolved. Towards that goal, it is important to understand the 3D reasoning capabilities of current models as well as identify the gaps between these models and humans. Therefore, we construct a new 3D visual understanding benchmark that covers fundamental 3D vision tasks in the Visual Question Answering (VQA) format. We evaluate state-of-the-art Vision-Language Models (VLMs), specialized models, and human subjects on it. Our results show that VLMs generally perform poorly, while the specialized models are accurate but not robust, failing under geometric perturbations. In contrast, human vision continues to be the most reliable 3D visual system. We further demonstrate that neural networks align more closely with human 3D vision mechanisms compared to classical computer vision methods, and Transformer-based networks such as ViT align more closely with human 3D vision mechanisms than CNNs. We hope our study will benefit the future development of foundation models for 3D vision.
Abstract:We introduce Infinigen Indoors, a Blender-based procedural generator of photorealistic indoor scenes. It builds upon the existing Infinigen system, which focuses on natural scenes, but expands its coverage to indoor scenes by introducing a diverse library of procedural indoor assets, including furniture, architecture elements, appliances, and other day-to-day objects. It also introduces a constraint-based arrangement system, which consists of a domain-specific language for expressing diverse constraints on scene composition, and a solver that generates scene compositions that maximally satisfy the constraints. We provide an export tool that allows the generated 3D objects and scenes to be directly used for training embodied agents in real-time simulators such as Omniverse and Unreal. Infinigen Indoors is open-sourced under the BSD license. Please visit https://infinigen.org for code and videos.
Abstract:We introduce Infinigen, a procedural generator of photorealistic 3D scenes of the natural world. Infinigen is entirely procedural: every asset, from shape to texture, is generated from scratch via randomized mathematical rules, using no external source and allowing infinite variation and composition. Infinigen offers broad coverage of objects and scenes in the natural world including plants, animals, terrains, and natural phenomena such as fire, cloud, rain, and snow. Infinigen can be used to generate unlimited, diverse training data for a wide range of computer vision tasks including object detection, semantic segmentation, optical flow, and 3D reconstruction. We expect Infinigen to be a useful resource for computer vision research and beyond. Please visit https://infinigen.org for videos, code and pre-generated data.