Abstract:Achieving 3D understanding of non-Lambertian objects is an important task with many useful applications, but most existing algorithms struggle to deal with such objects. One major obstacle towards progress in this field is the lack of holistic non-Lambertian benchmarks -- most benchmarks have low scene and object diversity, and none provide multi-layer 3D annotations for objects occluded by transparent surfaces. In this paper, we introduce LayeredFlow, a real world benchmark containing multi-layer ground truth annotation for optical flow of non-Lambertian objects. Compared to previous benchmarks, our benchmark exhibits greater scene and object diversity, with 150k high quality optical flow and stereo pairs taken over 185 indoor and outdoor scenes and 360 unique objects. Using LayeredFlow as evaluation data, we propose a new task called multi-layer optical flow. To provide training data for this task, we introduce a large-scale densely-annotated synthetic dataset containing 60k images within 30 scenes tailored for non-Lambertian objects. Training on our synthetic dataset enables model to predict multi-layer optical flow, while fine-tuning existing optical flow methods on the dataset notably boosts their performance on non-Lambertian objects without compromising the performance on diffuse objects. Data is available at https://layeredflow.cs.princeton.edu.
Abstract:We introduce Infinigen Indoors, a Blender-based procedural generator of photorealistic indoor scenes. It builds upon the existing Infinigen system, which focuses on natural scenes, but expands its coverage to indoor scenes by introducing a diverse library of procedural indoor assets, including furniture, architecture elements, appliances, and other day-to-day objects. It also introduces a constraint-based arrangement system, which consists of a domain-specific language for expressing diverse constraints on scene composition, and a solver that generates scene compositions that maximally satisfy the constraints. We provide an export tool that allows the generated 3D objects and scenes to be directly used for training embodied agents in real-time simulators such as Omniverse and Unreal. Infinigen Indoors is open-sourced under the BSD license. Please visit https://infinigen.org for code and videos.
Abstract:We introduce Infinigen, a procedural generator of photorealistic 3D scenes of the natural world. Infinigen is entirely procedural: every asset, from shape to texture, is generated from scratch via randomized mathematical rules, using no external source and allowing infinite variation and composition. Infinigen offers broad coverage of objects and scenes in the natural world including plants, animals, terrains, and natural phenomena such as fire, cloud, rain, and snow. Infinigen can be used to generate unlimited, diverse training data for a wide range of computer vision tasks including object detection, semantic segmentation, optical flow, and 3D reconstruction. We expect Infinigen to be a useful resource for computer vision research and beyond. Please visit https://infinigen.org for videos, code and pre-generated data.
Abstract:Algorithms for the action segmentation task typically use temporal models to predict what action is occurring at each frame for a minute-long daily activity. Recent studies have shown the potential of Transformer in modeling the relations among elements in sequential data. However, there are several major concerns when directly applying the Transformer to the action segmentation task, such as the lack of inductive biases with small training sets, the deficit in processing long input sequence, and the limitation of the decoder architecture to utilize temporal relations among multiple action segments to refine the initial predictions. To address these concerns, we design an efficient Transformer-based model for action segmentation task, named ASFormer, with three distinctive characteristics: (i) We explicitly bring in the local connectivity inductive priors because of the high locality of features. It constrains the hypothesis space within a reliable scope, and is beneficial for the action segmentation task to learn a proper target function with small training sets. (ii) We apply a pre-defined hierarchical representation pattern that efficiently handles long input sequences. (iii) We carefully design the decoder to refine the initial predictions from the encoder. Extensive experiments on three public datasets demonstrate that effectiveness of our methods. Code is available at \url{https://github.com/ChinaYi/ASFormer}.