Abstract:Algorithms for the action segmentation task typically use temporal models to predict what action is occurring at each frame for a minute-long daily activity. Recent studies have shown the potential of Transformer in modeling the relations among elements in sequential data. However, there are several major concerns when directly applying the Transformer to the action segmentation task, such as the lack of inductive biases with small training sets, the deficit in processing long input sequence, and the limitation of the decoder architecture to utilize temporal relations among multiple action segments to refine the initial predictions. To address these concerns, we design an efficient Transformer-based model for action segmentation task, named ASFormer, with three distinctive characteristics: (i) We explicitly bring in the local connectivity inductive priors because of the high locality of features. It constrains the hypothesis space within a reliable scope, and is beneficial for the action segmentation task to learn a proper target function with small training sets. (ii) We apply a pre-defined hierarchical representation pattern that efficiently handles long input sequences. (iii) We carefully design the decoder to refine the initial predictions from the encoder. Extensive experiments on three public datasets demonstrate that effectiveness of our methods. Code is available at \url{https://github.com/ChinaYi/ASFormer}.
Abstract:Surgical phase recognition is of particular interest to computer assisted surgery systems, in which the goal is to predict what phase is occurring at each frame for a surgery video. Networks with multi-stage architecture have been widely applied in many computer vision tasks with rich patterns, where a predictor stage first outputs initial predictions and an additional refinement stage operates on the initial predictions to perform further refinement. Existing works show that surgical video contents are well ordered and contain rich temporal patterns, making the multi-stage architecture well suited for the surgical phase recognition task. However, we observe that when simply applying the multi-stage architecture to the surgical phase recognition task, the end-to-end training manner will make the refinement ability fall short of its wishes. To address the problem, we propose a new non end-to-end training strategy and explore different designs of multi-stage architecture for surgical phase recognition task. For the non end-to-end training strategy, the refinement stage is trained separately with proposed two types of disturbed sequences. Meanwhile, we evaluate three different choices of refinement models to show that our analysis and solution are robust to the choices of specific multi-stage models. We conduct experiments on two public benchmarks, the M2CAI16 Workflow Challenge, and the Cholec80 dataset. Results show that multi-stage architecture trained with our strategy largely boosts the performance of the current state-of-the-art single-stage model. Code is available at \url{https://github.com/ChinaYi/casual_tcn}.