Abstract:Artificial neural network based Pedestrian Attribute Recognition (PAR) has been widely studied in recent years, despite many progresses, however, the energy consumption is still high. To address this issue, in this paper, we propose a Spiking Neural Network (SNN) based framework for energy-efficient attribute recognition. Specifically, we first adopt a spiking tokenizer module to transform the given pedestrian image into spiking feature representations. Then, the output will be fed into the spiking Transformer backbone networks for energy-efficient feature extraction. We feed the enhanced spiking features into a set of feed-forward networks for pedestrian attribute recognition. In addition to the widely used binary cross-entropy loss function, we also exploit knowledge distillation from the artificial neural network to the spiking Transformer network for more accurate attribute recognition. Extensive experiments on three widely used PAR benchmark datasets fully validated the effectiveness of our proposed SNN-PAR framework. The source code of this paper is released on \url{https://github.com/Event-AHU/OpenPAR}.
Abstract:Various Earth anomalies have destroyed the stable, balanced state, resulting in fatalities and serious destruction of property. With the advantages of large-scale and precise observation, high-resolution remote sensing images have been widely used for anomaly monitoring and localization. Powered by the deep representation, the existing methods have achieved remarkable advances, primarily in classification and change detection techniques. However, labeled samples are difficult to acquire due to the low probability of anomaly occurrence, and the trained models are limited to fixed anomaly categories, which hinders the application for anomalies with few samples or unknown anomalies. In this paper, to tackle this problem, we propose the anomaly change detection (AnomalyCD) technique, which accepts time-series observations and learns to identify anomalous changes by learning from the historical normal change pattern. Compared to the existing techniques, AnomalyCD processes an unfixed number of time steps and can localize the various anomalies in a unified manner, without human supervision. To benchmark AnomalyCD, we constructed a high-resolution dataset with time-series images dedicated to various Earth anomalies (the AnomalyCDD dataset). AnomalyCDD contains high-resolution (from 0.15 to 2.39 m/pixel), time-series (from 3 to 7 time steps), and large-scale images (1927.93 km2 in total) collected globally Furthermore, we developed a zero-shot baseline model (AnomalyCDM), which implements the AnomalyCD technique by extracting a general representation from the segment anything model (SAM) and conducting temporal comparison to distinguish the anomalous changes from normal changes. AnomalyCDM is designed as a two-stage workflow to enhance the efficiency, and has the ability to process the unseen images directly, without retraining for each scene.
Abstract:Pedestrian Attribute Recognition (PAR) is one of the indispensable tasks in human-centered research. However, existing datasets neglect different domains (e.g., environments, times, populations, and data sources), only conducting simple random splits, and the performance of these datasets has already approached saturation. In the past five years, no large-scale dataset has been opened to the public. To address this issue, this paper proposes a new large-scale, cross-domain pedestrian attribute recognition dataset to fill the data gap, termed MSP60K. It consists of 60,122 images and 57 attribute annotations across eight scenarios. Synthetic degradation is also conducted to further narrow the gap between the dataset and real-world challenging scenarios. To establish a more rigorous benchmark, we evaluate 17 representative PAR models under both random and cross-domain split protocols on our dataset. Additionally, we propose an innovative Large Language Model (LLM) augmented PAR framework, named LLM-PAR. This framework processes pedestrian images through a Vision Transformer (ViT) backbone to extract features and introduces a multi-embedding query Transformer to learn partial-aware features for attribute classification. Significantly, we enhance this framework with LLM for ensemble learning and visual feature augmentation. Comprehensive experiments across multiple PAR benchmark datasets have thoroughly validated the efficacy of our proposed framework. The dataset and source code accompanying this paper will be made publicly available at \url{https://github.com/Event-AHU/OpenPAR}.
Abstract:Existing pedestrian attribute recognition (PAR) algorithms are mainly developed based on a static image, however, the performance is unreliable in challenging scenarios, such as heavy occlusion, motion blur, etc. In this work, we propose to understand human attributes using video frames that can fully use temporal information by fine-tuning a pre-trained multi-modal foundation model efficiently. Specifically, we formulate the video-based PAR as a vision-language fusion problem and adopt a pre-trained foundation model CLIP to extract the visual features. More importantly, we propose a novel spatiotemporal side-tuning strategy to achieve parameter-efficient optimization of the pre-trained vision foundation model. To better utilize the semantic information, we take the full attribute list that needs to be recognized as another input and transform the attribute words/phrases into the corresponding sentence via split, expand, and prompt operations. Then, the text encoder of CLIP is utilized for embedding processed attribute descriptions. The averaged visual tokens and text tokens are concatenated and fed into a fusion Transformer for multi-modal interactive learning. The enhanced tokens will be fed into a classification head for pedestrian attribute prediction. Extensive experiments on two large-scale video-based PAR datasets fully validated the effectiveness of our proposed framework. The source code of this paper is available at https://github.com/Event-AHU/OpenPAR.
Abstract:Image search is an essential and user-friendly method to explore vast galleries of digital images. However, existing image search methods heavily rely on proximity measurements like tag matching or image similarity, requiring precise user inputs for satisfactory results. To meet the growing demand for a contemporary image search engine that enables accurate comprehension of users' search intentions, we introduce an innovative user intent expansion framework. Our framework leverages visual-language models to parse and compose multi-modal user inputs to provide more accurate and satisfying results. It comprises two-stage processes: 1) a parsing stage that incorporates a language parsing module with large language models to enhance the comprehension of textual inputs, along with a visual parsing module that integrates an interactive segmentation module to swiftly identify detailed visual elements within images; and 2) a logic composition stage that combines multiple user search intents into a unified logic expression for more sophisticated operations in complex searching scenarios. Moreover, the intent expansion framework enables users to perform flexible contextualized interactions with the search results to further specify or adjust their detailed search intents iteratively. We implemented the framework into an image search system for NFT (non-fungible token) search and conducted a user study to evaluate its usability and novel properties. The results indicate that the proposed framework significantly improves users' image search experience. Particularly the parsing and contextualized interactions prove useful in allowing users to express their search intents more accurately and engage in a more enjoyable iterative search experience.
Abstract:Persuading people to change their opinions is a common practice in online discussion forums on topics ranging from political campaigns to relationship consultation. Enhancing people's ability to write persuasive arguments could not only practice their critical thinking and reasoning but also contribute to the effectiveness and civility in online communication. It is, however, not an easy task in online discussion settings where written words are the primary communication channel. In this paper, we derived four design goals for a tool that helps users improve the persuasiveness of arguments in online discussions through a survey with 123 online forum users and interviews with five debating experts. To satisfy these design goals, we analyzed and built a labeled dataset of fine-grained persuasive strategies (i.e., logos, pathos, ethos, and evidence) in 164 arguments with high ratings on persuasiveness from ChangeMyView, a popular online discussion forum. We then designed an interactive visual system, Persua, which provides example-based guidance on persuasive strategies to enhance the persuasiveness of arguments. In particular, the system constructs portfolios of arguments based on different persuasive strategies applied to a given discussion topic. It then presents concrete examples based on the difference between the portfolios of user input and high-quality arguments in the dataset. A between-subjects study shows suggestive evidence that Persua encourages users to submit more times for feedback and helps users improve more on the persuasiveness of their arguments than a baseline system. Finally, a set of design considerations was summarized to guide future intelligent systems that improve the persuasiveness in text.
Abstract:In this paper, we present techniques to measure crop heights using a 3D LiDAR mounted on an Unmanned Aerial Vehicle (UAV). Knowing the height of plants is crucial to monitor their overall health and growth cycles, especially for high-throughput plant phenotyping. We present a methodology for extracting plant heights from 3D LiDAR point clouds, specifically focusing on row-crop environments. The key steps in our algorithm are clustering of LiDAR points to semi-automatically detect plots, local ground plane estimation, and height estimation. The plot detection uses a k--means clustering algorithm followed by a voting scheme to find the bounding boxes of individual plots. We conducted a series of experiments in controlled and natural settings. Our algorithm was able to estimate the plant heights in a field with 112 plots within +-5.36%. This is the first such dataset for 3D LiDAR from an airborne robot over a wheat field. The developed code can be found on the GitHub repository located at https://github.com/hsd1121/PointCloudProcessing.
Abstract:The use of artificial intelligence in clinical care to improve decision support systems is increasing. This is not surprising since, by its very nature, the practice of medicine consists of making decisions based on observations from different systems both inside and outside the human body. In this paper, we combine three general systems (ICU, diabetes, and comorbidities) and use them to make patient clinical predictions. We use an artificial intelligence approach to show that we can improve mortality prediction of hospitalized diabetic patients. We do this by utilizing a machine learning approach to select clinical input features that are more likely to predict mortality. We then use these features to create a hybrid mortality prediction model and compare our results to non-artificial intelligence models. For simplicity, we limit our input features to patient comorbidities and features derived from a well-known mortality measure, the Sequential Organ Failure Assessment (SOFA).
Abstract:Interactive applications incorporating high-data rate sensing and computer vision are becoming possible due to novel runtime systems and the use of parallel computation resources. To allow interactive use, such applications require careful tuning of multiple application parameters to meet required fidelity and latency bounds. This is a nontrivial task, often requiring expert knowledge, which becomes intractable as resources and application load characteristics change. This paper describes a method for automatic performance tuning that learns application characteristics and effects of tunable parameters online, and constructs models that are used to maximize fidelity for a given latency constraint. The paper shows that accurate latency models can be learned online, knowledge of application structure can be used to reduce the complexity of the learning task, and operating points can be found that achieve 90% of the optimal fidelity by exploring the parameter space only 3% of the time.