Abstract:The innate correlation between a person's face and voice has recently emerged as a compelling area of study, especially within the context of multilingual environments. This paper introduces our novel solution to the Face-Voice Association in Multilingual Environments (FAME) 2024 challenge, focusing on a contrastive learning-based chaining-cluster method to enhance face-voice association. This task involves the challenges of building biometric relations between auditory and visual modality cues and modelling the prosody interdependence between different languages while addressing both intrinsic and extrinsic variability present in the data. To handle these non-trivial challenges, our method employs supervised cross-contrastive (SCC) learning to establish robust associations between voices and faces in multi-language scenarios. Following this, we have specifically designed a chaining-cluster-based post-processing step to mitigate the impact of outliers often found in unconstrained in the wild data. We conducted extensive experiments to investigate the impact of language on face-voice association. The overall results were evaluated on the FAME public evaluation platform, where we achieved 2nd place. The results demonstrate the superior performance of our method, and we validate the robustness and effectiveness of our proposed approach. Code is available at https://github.com/colaudiolab/FAME24_solution.
Abstract:Neural Surface Reconstruction learns a Signed Distance Field~(SDF) to reconstruct the 3D model from multi-view images. Previous works adopt voxel-based explicit representation to improve efficiency. However, they ignored the gradient instability of interpolation in the voxel grid, leading to degradation on convergence and smoothness. Besides, previous works entangled the optimization of geometry and radiance, which leads to the deformation of geometry to explain radiance, causing artifacts when reconstructing textured planes. In this work, we reveal that the instability of gradient comes from its discontinuity during trilinear interpolation, and propose to use the interpolated gradient instead of the original analytical gradient to eliminate the discontinuity. Based on gradient interpolation, we propose VoxNeuS, a lightweight surface reconstruction method for computational and memory efficient neural surface reconstruction. Thanks to the explicit representation, the gradient of regularization terms, i.e. Eikonal and curvature loss, are directly solved, avoiding computation and memory-access overhead. Further, VoxNeuS adopts a geometry-radiance disentangled architecture to handle the geometry deformation from radiance optimization. The experimental results show that VoxNeuS achieves better reconstruction quality than previous works. The entire training process takes 15 minutes and less than 3 GB of memory on a single 2080ti GPU.
Abstract:Neural Radiance Field~(NeRF) achieves extremely high quality in object-scaled and indoor scene reconstruction. However, there exist some challenges when reconstructing large-scale scenes. MLP-based NeRFs suffer from limited network capacity, while volume-based NeRFs are heavily memory-consuming when the scene resolution increases. Recent approaches propose to geographically partition the scene and learn each sub-region using an individual NeRF. Such partitioning strategies help volume-based NeRF exceed the single GPU memory limit and scale to larger scenes. However, this approach requires multiple background NeRF to handle out-of-partition rays, which leads to redundancy of learning. Inspired by the fact that the background of current partition is the foreground of adjacent partition, we propose a scalable scene reconstruction method based on joint Multi-resolution Hash Grids, named DistGrid. In this method, the scene is divided into multiple closely-paved yet non-overlapped Axis-Aligned Bounding Boxes, and a novel segmented volume rendering method is proposed to handle cross-boundary rays, thereby eliminating the need for background NeRFs. The experiments demonstrate that our method outperforms existing methods on all evaluated large-scale scenes, and provides visually plausible scene reconstruction. The scalability of our method on reconstruction quality is further evaluated qualitatively and quantitatively.
Abstract:This paper reviews the NTIRE 2024 RAW Image Super-Resolution Challenge, highlighting the proposed solutions and results. New methods for RAW Super-Resolution could be essential in modern Image Signal Processing (ISP) pipelines, however, this problem is not as explored as in the RGB domain. Th goal of this challenge is to upscale RAW Bayer images by 2x, considering unknown degradations such as noise and blur. In the challenge, a total of 230 participants registered, and 45 submitted results during thee challenge period. The performance of the top-5 submissions is reviewed and provided here as a gauge for the current state-of-the-art in RAW Image Super-Resolution.
Abstract:3D Gaussian Splatting (3D-GS) technique couples 3D Gaussian primitives with differentiable rasterization to achieve high-quality novel view synthesis results while providing advanced real-time rendering performance. However, due to the flaw of its adaptive density control strategy in 3D-GS, it frequently suffers from over-reconstruction issue in intricate scenes containing high-frequency details, leading to blurry rendered images. The underlying reason for the flaw has still been under-explored. In this work, we present a comprehensive analysis of the cause of aforementioned artifacts, namely gradient collision, which prevents large Gaussians in over-reconstructed regions from splitting. To address this issue, we propose the novel homodirectional view-space positional gradient as the criterion for densification. Our strategy efficiently identifies large Gaussians in over-reconstructed regions, and recovers fine details by splitting. We evaluate our proposed method on various challenging datasets. The experimental results indicate that our approach achieves the best rendering quality with reduced or similar memory consumption. Our method is easy to implement and can be incorporated into a wide variety of most recent Gaussian Splatting-based methods. We will open source our codes upon formal publication. Our project page is available at: https://ty424.github.io/AbsGS.github.io/
Abstract:Temporal relation prediction in incomplete temporal knowledge graphs (TKGs) is a popular temporal knowledge graph completion (TKGC) problem in both transductive and inductive settings. Traditional embedding-based TKGC models (TKGE) rely on structured connections and can only handle a fixed set of entities, i.e., the transductive setting. In the inductive setting where test TKGs contain emerging entities, the latest methods are based on symbolic rules or pre-trained language models (PLMs). However, they suffer from being inflexible and not time-specific, respectively. In this work, we extend the fully-inductive setting, where entities in the training and test sets are totally disjoint, into TKGs and take a further step towards a more flexible and time-sensitive temporal relation prediction approach SST-BERT, incorporating Structured Sentences with Time-enhanced BERT. Our model can obtain the entity history and implicitly learn rules in the semantic space by encoding structured sentences, solving the problem of inflexibility. We propose to use a time masking MLM task to pre-train BERT in a corpus rich in temporal tokens specially generated for TKGs, enhancing the time sensitivity of SST-BERT. To compute the probability of occurrence of a target quadruple, we aggregate all its structured sentences from both temporal and semantic perspectives into a score. Experiments on the transductive datasets and newly generated fully-inductive benchmarks show that SST-BERT successfully improves over state-of-the-art baselines.
Abstract:The great success of Deep Neural Networks (DNNs) has inspired the algorithmic development of DNN-based Fixed-Point (DNN-FP) for computer vision tasks. DNN-FP methods, trained by Back-Propagation Through Time or computing the inaccurate inversion of the Jacobian, suffer from inferior representation ability. Motivated by the representation power of the Transformer, we propose a framework to unroll the FP and approximate each unrolled process via Transformer blocks, called FPformer. To reduce the high consumption of memory and computation, we come up with FPRformer by sharing parameters between the successive blocks. We further design a module to adapt Anderson acceleration to FPRformer to enlarge the unrolled iterations and improve the performance, called FPAformer. In order to fully exploit the capability of the Transformer, we apply the proposed model to image restoration, using self-supervised pre-training and supervised fine-tuning. 161 tasks from 4 categories of image restoration problems are used in the pre-training phase. Hereafter, the pre-trained FPformer, FPRformer, and FPAformer are further fine-tuned for the comparison scenarios. Using self-supervised pre-training and supervised fine-tuning, the proposed FPformer, FPRformer, and FPAformer achieve competitive performance with state-of-the-art image restoration methods and better training efficiency. FPAformer employs only 29.82% parameters used in SwinIR models, and provides superior performance after fine-tuning. To train these comparison models, it takes only 26.9% time used for training SwinIR models. It provides a promising way to introduce the Transformer in low-level vision tasks.
Abstract:With the rapid development of automatic fake news detection technology, fact extraction and verification (FEVER) has been attracting more attention. The task aims to extract the most related fact evidences from millions of open-domain Wikipedia documents and then verify the credibility of corresponding claims. Although several strong models have been proposed for the task and they have made great progress, we argue that they fail to utilize multi-view contextual information and thus cannot obtain better performance. In this paper, we propose to integrate multi-view contextual information (IMCI) for fact extraction and verification. For each evidence sentence, we define two kinds of context, i.e. intra-document context and inter-document context}. Intra-document context consists of the document title and all the other sentences from the same document. Inter-document context consists of all other evidences which may come from different documents. Then we integrate the multi-view contextual information to encode the evidence sentences to handle the task. Our experimental results on FEVER 1.0 shared task show that our IMCI framework makes great progress on both fact extraction and verification, and achieves state-of-the-art performance with a winning FEVER score of 72.97% and label accuracy of 75.84% on the online blind test set. We also conduct ablation study to detect the impact of multi-view contextual information. Our codes will be released at https://github.com/phoenixsecularbird/IMCI.
Abstract:Image deblurring task is an ill-posed one, where exists infinite feasible solutions for blurry image. Modern deep learning approaches usually discard the learning of blur kernels and directly employ end-to-end supervised learning. Popular deblurring datasets define the label as one of the feasible solutions. However, we argue that it's not reasonable to specify a label directly, especially when the label is sampled from a random distribution. Therefore, we propose to make the network learn the distribution of feasible solutions, and design based on this consideration a novel multi-head output architecture and corresponding loss function for distribution learning. Our approach enables the model to output multiple feasible solutions to approximate the target distribution. We further propose a novel parameter multiplexing method that reduces the number of parameters and computational effort while improving performance. We evaluated our approach on multiple image-deblur models, including the current state-of-the-art NAFNet. The improvement of best overall (pick the highest score among multiple heads for each validation image) PSNR outperforms the compared baselines up to 0.11~0.18dB. The improvement of the best single head (pick the best-performed head among multiple heads on validation set) PSNR outperforms the compared baselines up to 0.04~0.08dB. The codes are available at https://github.com/Liu-SD/multi-output-deblur.
Abstract:Unsupervised sentence embedding aims to obtain the most appropriate embedding for a sentence to reflect its semantic. Contrastive learning has been attracting developing attention. For a sentence, current models utilize diverse data augmentation methods to generate positive samples, while consider other independent sentences as negative samples. Then they adopt InfoNCE loss to pull the embeddings of positive pairs gathered, and push those of negative pairs scattered. Although these models have made great progress on sentence embedding, we argue that they may suffer from feature suppression. The models fail to distinguish and decouple textual similarity and semantic similarity. And they may overestimate the semantic similarity of any pairs with similar textual regardless of the actual semantic difference between them. This is because positive pairs in unsupervised contrastive learning come with similar and even the same textual through data augmentation. To alleviate feature suppression, we propose contrastive learning for unsupervised sentence embedding with soft negative samples (SNCSE). Soft negative samples share highly similar textual but have surely and apparently different semantic with the original samples. Specifically, we take the negation of original sentences as soft negative samples, and propose Bidirectional Margin Loss (BML) to introduce them into traditional contrastive learning framework, which merely involves positive and negative samples. Our experimental results show that SNCSE can obtain state-of-the-art performance on semantic textual similarity (STS) task with average Spearman's correlation coefficient of 78.97% on BERTbase and 79.23% on RoBERTabase. Besides, we adopt rank-based error analysis method to detect the weakness of SNCSE for future study.