Abstract:Accurate traffic forecasting is crucial for effective urban planning and transportation management, enabling efficient resource allocation and enhanced travel experiences. However, existing models often face limitations in generalization, struggling with zero-shot prediction on unseen regions and cities, as well as diminished long-term accuracy. This is primarily due to the inherent challenges in handling the spatial and temporal heterogeneity of traffic data, coupled with the significant distribution shift across time and space. In this work, we aim to unlock new possibilities for building versatile, resilient and adaptive spatio-temporal foundation models for traffic prediction. To achieve this goal, we introduce a novel foundation model, named OpenCity, that can effectively capture and normalize the underlying spatio-temporal patterns from diverse data characteristics, facilitating zero-shot generalization across diverse urban environments. OpenCity integrates the Transformer architecture with graph neural networks to model the complex spatio-temporal dependencies in traffic data. By pre-training OpenCity on large-scale, heterogeneous traffic datasets, we enable the model to learn rich, generalizable representations that can be seamlessly applied to a wide range of traffic forecasting scenarios. Experimental results demonstrate that OpenCity exhibits exceptional zero-shot predictive performance. Moreover, OpenCity showcases promising scaling laws, suggesting the potential for developing a truly one-for-all traffic prediction solution that can adapt to new urban contexts with minimal overhead. We made our proposed OpenCity model open-source and it is available at the following link: https://github.com/HKUDS/OpenCity.
Abstract:The objective of traffic prediction is to accurately forecast and analyze the dynamics of transportation patterns, considering both space and time. However, the presence of distribution shift poses a significant challenge in this field, as existing models struggle to generalize well when faced with test data that significantly differs from the training distribution. To tackle this issue, this paper introduces a simple and universal spatio-temporal prompt-tuning framework-FlashST, which adapts pre-trained models to the specific characteristics of diverse downstream datasets, improving generalization in diverse traffic prediction scenarios. Specifically, the FlashST framework employs a lightweight spatio-temporal prompt network for in-context learning, capturing spatio-temporal invariant knowledge and facilitating effective adaptation to diverse scenarios. Additionally, we incorporate a distribution mapping mechanism to align the data distributions of pre-training and downstream data, facilitating effective knowledge transfer in spatio-temporal forecasting. Empirical evaluations demonstrate the effectiveness of our FlashST across different spatio-temporal prediction tasks using diverse urban datasets. Code is available at https://github.com/HKUDS/FlashST.
Abstract:Spatio-temporal prediction aims to forecast and gain insights into the ever-changing dynamics of urban environments across both time and space. Its purpose is to anticipate future patterns, trends, and events in diverse facets of urban life, including transportation, population movement, and crime rates. Although numerous efforts have been dedicated to developing neural network techniques for accurate predictions on spatio-temporal data, it is important to note that many of these methods heavily depend on having sufficient labeled data to generate precise spatio-temporal representations. Unfortunately, the issue of data scarcity is pervasive in practical urban sensing scenarios. Consequently, it becomes necessary to build a spatio-temporal model with strong generalization capabilities across diverse spatio-temporal learning scenarios. Taking inspiration from the remarkable achievements of large language models (LLMs), our objective is to create a spatio-temporal LLM that can exhibit exceptional generalization capabilities across a wide range of downstream urban tasks. To achieve this objective, we present the UrbanGPT, which seamlessly integrates a spatio-temporal dependency encoder with the instruction-tuning paradigm. This integration enables LLMs to comprehend the complex inter-dependencies across time and space, facilitating more comprehensive and accurate predictions under data scarcity. To validate the effectiveness of our approach, we conduct extensive experiments on various public datasets, covering different spatio-temporal prediction tasks. The results consistently demonstrate that our UrbanGPT, with its carefully designed architecture, consistently outperforms state-of-the-art baselines. These findings highlight the potential of building large language models for spatio-temporal learning, particularly in zero-shot scenarios where labeled data is scarce.
Abstract:In recent years, there has been a rapid development of spatio-temporal prediction techniques in response to the increasing demands of traffic management and travel planning. While advanced end-to-end models have achieved notable success in improving predictive performance, their integration and expansion pose significant challenges. This work aims to address these challenges by introducing a spatio-temporal pre-training framework that seamlessly integrates with downstream baselines and enhances their performance. The framework is built upon two key designs: (i) We propose a spatio-temporal mask autoencoder as a pre-training model for learning spatio-temporal dependencies. The model incorporates customized parameter learners and hierarchical spatial pattern encoding networks. These modules are specifically designed to capture spatio-temporal customized representations and intra- and inter-cluster region semantic relationships, which have often been neglected in existing approaches. (ii) We introduce an adaptive mask strategy as part of the pre-training mechanism. This strategy guides the mask autoencoder in learning robust spatio-temporal representations and facilitates the modeling of different relationships, ranging from intra-cluster to inter-cluster, in an easy-to-hard training manner. Extensive experiments conducted on representative benchmarks demonstrate the effectiveness of our proposed method. We have made our model implementation publicly available at https://github.com/HKUDS/GPT-ST.
Abstract:Among various region embedding methods, graph-based region relation learning models stand out, owing to their strong structure representation ability for encoding spatial correlations with graph neural networks. Despite their effectiveness, several key challenges have not been well addressed in existing methods: i) Data noise and missing are ubiquitous in many spatio-temporal scenarios due to a variety of factors. ii) Input spatio-temporal data (e.g., mobility traces) usually exhibits distribution heterogeneity across space and time. In such cases, current methods are vulnerable to the quality of the generated region graphs, which may lead to suboptimal performance. In this paper, we tackle the above challenges by exploring the Automated Spatio-Temporal graph contrastive learning paradigm (AutoST) over the heterogeneous region graph generated from multi-view data sources. Our \model\ framework is built upon a heterogeneous graph neural architecture to capture the multi-view region dependencies with respect to POI semantics, mobility flow patterns and geographical positions. To improve the robustness of our GNN encoder against data noise and distribution issues, we design an automated spatio-temporal augmentation scheme with a parameterized contrastive view generator. AutoST can adapt to the spatio-temporal heterogeneous graph with multi-view semantics well preserved. Extensive experiments for three downstream spatio-temporal mining tasks on several real-world datasets demonstrate the significant performance gain achieved by our \model\ over a variety of baselines. The code is publicly available at https://github.com/HKUDS/AutoST.
Abstract:Crime has become a major concern in many cities, which calls for the rising demand for timely predicting citywide crime occurrence. Accurate crime prediction results are vital for the beforehand decision-making of government to alleviate the increasing concern about the public safety. While many efforts have been devoted to proposing various spatial-temporal forecasting techniques to explore dependence across locations and time periods, most of them follow a supervised learning manner, which limits their spatial-temporal representation ability on sparse crime data. Inspired by the recent success in self-supervised learning, this work proposes a Spatial-Temporal Hypergraph Self-Supervised Learning framework (ST-HSL) to tackle the label scarcity issue in crime prediction. Specifically, we propose the cross-region hypergraph structure learning to encode region-wise crime dependency under the entire urban space. Furthermore, we design the dual-stage self-supervised learning paradigm, to not only jointly capture local- and global-level spatial-temporal crime patterns, but also supplement the sparse crime representation by augmenting region self-discrimination. We perform extensive experiments on two real-life crime datasets. Evaluation results show that our ST-HSL significantly outperforms state-of-the-art baselines. Further analysis provides insights into the superiority of our ST-HSL method in the representation of spatial-temporal crime patterns. The implementation code is available at https://github.com/LZH-YS1998/STHSL.