Abstract:Real-world data is represented in both structured (e.g., graph connections) and unstructured (e.g., textual, visual information) formats, encompassing complex relationships that include explicit links (such as social connections and user behaviors) and implicit interdependencies among semantic entities, often illustrated through knowledge graphs. In this work, we propose GraphAgent, an automated agent pipeline that addresses both explicit graph dependencies and implicit graph-enhanced semantic inter-dependencies, aligning with practical data scenarios for predictive tasks (e.g., node classification) and generative tasks (e.g., text generation). GraphAgent comprises three key components: (i) a Graph Generator Agent that builds knowledge graphs to reflect complex semantic dependencies; (ii) a Task Planning Agent that interprets diverse user queries and formulates corresponding tasks through agentic self-planning; and (iii) a Task Execution Agent that efficiently executes planned tasks while automating tool matching and invocation in response to user queries. These agents collaborate seamlessly, integrating language models with graph language models to uncover intricate relational information and data semantic dependencies. Through extensive experiments on various graph-related predictive and text generative tasks on diverse datasets, we demonstrate the effectiveness of our GraphAgent across various settings. We have made our proposed GraphAgent open-source at: https://github.com/HKUDS/GraphAgent.
Abstract:Spatio-temporal prediction is a crucial research area in data-driven urban computing, with implications for transportation, public safety, and environmental monitoring. However, scalability and generalization challenges remain significant obstacles. Advanced models often rely on Graph Neural Networks to encode spatial and temporal correlations, but struggle with the increased complexity of large-scale datasets. The recursive GNN-based message passing schemes used in these models hinder their training and deployment in real-life urban sensing scenarios. Moreover, long-spanning large-scale spatio-temporal data introduce distribution shifts, necessitating improved generalization performance. To address these challenges, we propose a simple framework for spatio-temporal prediction - EasyST paradigm. It learns lightweight and robust Multi-Layer Perceptrons (MLPs) by effectively distilling knowledge from complex spatio-temporal GNNs. We ensure robust knowledge distillation by integrating the spatio-temporal information bottleneck with teacher-bounded regression loss, filtering out task-irrelevant noise and avoiding erroneous guidance. We further enhance the generalization ability of the student model by incorporating spatial and temporal prompts to provide downstream task contexts. Evaluation on three spatio-temporal datasets for urban computing tasks demonstrates that EasyST surpasses state-of-the-art approaches in terms of efficiency and accuracy. The implementation code is available at: https://github.com/HKUDS/EasyST.
Abstract:Multimedia online platforms (e.g., Amazon, TikTok) have greatly benefited from the incorporation of multimedia (e.g., visual, textual, and acoustic) content into their personal recommender systems. These modalities provide intuitive semantics that facilitate modality-aware user preference modeling. However, two key challenges in multi-modal recommenders remain unresolved: i) The introduction of multi-modal encoders with a large number of additional parameters causes overfitting, given high-dimensional multi-modal features provided by extractors (e.g., ViT, BERT). ii) Side information inevitably introduces inaccuracies and redundancies, which skew the modality-interaction dependency from reflecting true user preference. To tackle these problems, we propose to simplify and empower recommenders through Multi-modal Knowledge Distillation (PromptMM) with the prompt-tuning that enables adaptive quality distillation. Specifically, PromptMM conducts model compression through distilling u-i edge relationship and multi-modal node content from cumbersome teachers to relieve students from the additional feature reduction parameters. To bridge the semantic gap between multi-modal context and collaborative signals for empowering the overfitting teacher, soft prompt-tuning is introduced to perform student task-adaptive. Additionally, to adjust the impact of inaccuracies in multimedia data, a disentangled multi-modal list-wise distillation is developed with modality-aware re-weighting mechanism. Experiments on real-world data demonstrate PromptMM's superiority over existing techniques. Ablation tests confirm the effectiveness of key components. Additional tests show the efficiency and effectiveness.
Abstract:Spatio-temporal prediction aims to forecast and gain insights into the ever-changing dynamics of urban environments across both time and space. Its purpose is to anticipate future patterns, trends, and events in diverse facets of urban life, including transportation, population movement, and crime rates. Although numerous efforts have been dedicated to developing neural network techniques for accurate predictions on spatio-temporal data, it is important to note that many of these methods heavily depend on having sufficient labeled data to generate precise spatio-temporal representations. Unfortunately, the issue of data scarcity is pervasive in practical urban sensing scenarios. Consequently, it becomes necessary to build a spatio-temporal model with strong generalization capabilities across diverse spatio-temporal learning scenarios. Taking inspiration from the remarkable achievements of large language models (LLMs), our objective is to create a spatio-temporal LLM that can exhibit exceptional generalization capabilities across a wide range of downstream urban tasks. To achieve this objective, we present the UrbanGPT, which seamlessly integrates a spatio-temporal dependency encoder with the instruction-tuning paradigm. This integration enables LLMs to comprehend the complex inter-dependencies across time and space, facilitating more comprehensive and accurate predictions under data scarcity. To validate the effectiveness of our approach, we conduct extensive experiments on various public datasets, covering different spatio-temporal prediction tasks. The results consistently demonstrate that our UrbanGPT, with its carefully designed architecture, consistently outperforms state-of-the-art baselines. These findings highlight the potential of building large language models for spatio-temporal learning, particularly in zero-shot scenarios where labeled data is scarce.
Abstract:Heterogeneous graph learning aims to capture complex relationships and diverse relational semantics among entities in a heterogeneous graph to obtain meaningful representations for nodes and edges. Recent advancements in heterogeneous graph neural networks (HGNNs) have achieved state-of-the-art performance by considering relation heterogeneity and using specialized message functions and aggregation rules. However, existing frameworks for heterogeneous graph learning have limitations in generalizing across diverse heterogeneous graph datasets. Most of these frameworks follow the "pre-train" and "fine-tune" paradigm on the same dataset, which restricts their capacity to adapt to new and unseen data. This raises the question: "Can we generalize heterogeneous graph models to be well-adapted to diverse downstream learning tasks with distribution shifts in both node token sets and relation type heterogeneity?'' To tackle those challenges, we propose HiGPT, a general large graph model with Heterogeneous graph instruction-tuning paradigm. Our framework enables learning from arbitrary heterogeneous graphs without the need for any fine-tuning process from downstream datasets. To handle distribution shifts in heterogeneity, we introduce an in-context heterogeneous graph tokenizer that captures semantic relationships in different heterogeneous graphs, facilitating model adaptation. We incorporate a large corpus of heterogeneity-aware graph instructions into our HiGPT, enabling the model to effectively comprehend complex relation heterogeneity and distinguish between various types of graph tokens. Furthermore, we introduce the Mixture-of-Thought (MoT) instruction augmentation paradigm to mitigate data scarcity by generating diverse and informative instructions. Through comprehensive evaluations, our proposed framework demonstrates exceptional performance in terms of generalization performance.
Abstract:The problem of data sparsity has long been a challenge in recommendation systems, and previous studies have attempted to address this issue by incorporating side information. However, this approach often introduces side effects such as noise, availability issues, and low data quality, which in turn hinder the accurate modeling of user preferences and adversely impact recommendation performance. In light of the recent advancements in large language models (LLMs), which possess extensive knowledge bases and strong reasoning capabilities, we propose a novel framework called LLMRec that enhances recommender systems by employing three simple yet effective LLM-based graph augmentation strategies. Our approach leverages the rich content available within online platforms (e.g., Netflix, MovieLens) to augment the interaction graph in three ways: (i) reinforcing user-item interaction egde, (ii) enhancing the understanding of item node attributes, and (iii) conducting user node profiling, intuitively from the natural language perspective. By employing these strategies, we address the challenges posed by sparse implicit feedback and low-quality side information in recommenders. Besides, to ensure the quality of the augmentation, we develop a denoised data robustification mechanism that includes techniques of noisy implicit feedback pruning and MAE-based feature enhancement that help refine the augmented data and improve its reliability. Furthermore, we provide theoretical analysis to support the effectiveness of LLMRec and clarify the benefits of our method in facilitating model optimization. Experimental results on benchmark datasets demonstrate the superiority of our LLM-based augmentation approach over state-of-the-art techniques. To ensure reproducibility, we have made our code and augmented data publicly available at: https://github.com/HKUDS/LLMRec.git
Abstract:Spatio-temporal prediction is crucial in numerous real-world applications, including traffic forecasting and crime prediction, which aim to improve public transportation and safety management. Many state-of-the-art models demonstrate the strong capability of spatio-temporal graph neural networks (STGNN) to capture complex spatio-temporal correlations. However, despite their effectiveness, existing approaches do not adequately address several key challenges. Data quality issues, such as data scarcity and sparsity, lead to data noise and a lack of supervised signals, which significantly limit the performance of STGNN. Although recent STGNN models with contrastive learning aim to address these challenges, most of them use pre-defined augmentation strategies that heavily depend on manual design and cannot be customized for different Spatio-Temporal Graph (STG) scenarios. To tackle these challenges, we propose a new spatio-temporal contrastive learning (CL4ST) framework to encode robust and generalizable STG representations via the STG augmentation paradigm. Specifically, we design the meta view generator to automatically construct node and edge augmentation views for each disentangled spatial and temporal graph in a data-driven manner. The meta view generator employs meta networks with parameterized generative model to customize the augmentations for each input. This personalizes the augmentation strategies for every STG and endows the learning framework with spatio-temporal-aware information. Additionally, we integrate a unified spatio-temporal graph attention network with the proposed meta view generator and two-branch graph contrastive learning paradigms. Extensive experiments demonstrate that our CL4ST significantly improves performance over various state-of-the-art baselines in traffic and crime prediction.
Abstract:Spatio-temporal graph neural networks (STGNNs) have gained popularity as a powerful tool for effectively modeling spatio-temporal dependencies in diverse real-world urban applications, including intelligent transportation and public safety. However, the black-box nature of STGNNs limits their interpretability, hindering their application in scenarios related to urban resource allocation and policy formulation. To bridge this gap, we propose an Explainable Spatio-Temporal Graph Neural Networks (STExplainer) framework that enhances STGNNs with inherent explainability, enabling them to provide accurate predictions and faithful explanations simultaneously. Our framework integrates a unified spatio-temporal graph attention network with a positional information fusion layer as the STG encoder and decoder, respectively. Furthermore, we propose a structure distillation approach based on the Graph Information Bottleneck (GIB) principle with an explainable objective, which is instantiated by the STG encoder and decoder. Through extensive experiments, we demonstrate that our STExplainer outperforms state-of-the-art baselines in terms of predictive accuracy and explainability metrics (i.e., sparsity and fidelity) on traffic and crime prediction tasks. Furthermore, our model exhibits superior representation ability in alleviating data missing and sparsity issues. The implementation code is available at: https://github.com/HKUDS/STExplainer.
Abstract:Graph Neural Networks (GNNs) have advanced graph structure understanding via recursive information exchange and aggregation among graph nodes. To improve model robustness, self-supervised learning (SSL) has emerged as a promising approach for data augmentation. However, existing methods for generating pre-trained graph embeddings often rely on fine-tuning with specific downstream task labels, which limits their usability in scenarios where labeled data is scarce or unavailable. To address this, our research focuses on advancing the generalization capabilities of graph models in challenging zero-shot learning scenarios. Inspired by the success of large language models (LLMs), we aim to develop a graph-oriented LLM that can achieve high generalization across diverse downstream datasets and tasks, even without any information available from the downstream graph data. In this work, we present the GraphGPT framework that aligns LLMs with graph structural knowledge with a graph instruction tuning paradigm. Our framework incorporates a text-graph grounding component to establish a connection between textual information and graph structures. Additionally, we propose a dual-stage instruction tuning paradigm, accompanied by a lightweight graph-text alignment projector. This paradigm explores self-supervised graph structural signals and task-specific graph instructions, to guide LLMs in understanding complex graph structures and improving their adaptability across different downstream tasks. Our framework is evaluated on supervised and zero-shot graph learning tasks, demonstrating superior generalization and outperforming state-of-the-art baselines.
Abstract:Accurate traffic forecasting, the foundation of intelligent transportation systems (ITS), has never been more significant than nowadays due to the prosperity of the smart cities and urban computing. Recently, Graph Neural Network truly outperforms the traditional methods. Nevertheless, the most conventional GNN based model works well while given a pre-defined graph structure. And the existing methods of defining the graph structures focus purely on spatial dependencies and ignored the temporal correlation. Besides, the semantics of the static pre-defined graph adjacency applied during the whole training progress is always incomplete, thus overlooking the latent topologies that may fine-tune the model. To tackle these challenges, we proposed a new traffic forecasting framework--Spatio-Temporal Latent Graph Structure Learning networks (ST-LGSL). More specifically, the model employed a graph generator based on Multilayer perceptron and K-Nearest Neighbor, which learns the latent graph topological information from the entire data considering both spatial and temporal dynamics. Furthermore, with the initialization of MLP-kNN based on ground-truth adjacency matrix and similarity metric in kNN, ST-LGSL aggregates the topologies focusing on geography and node similarity. Additionally, the generated graphs act as the input of spatio-temporal prediction module combined with the Diffusion Graph Convolutions and Gated Temporal Convolutions Networks. Experimental results on two benchmarking datasets in real world demonstrate that ST-LGSL outperforms various types of state-of-art baselines.