Abstract:The integration of the Internet of Things (IoT) and modern Artificial Intelligence (AI) has given rise to a new paradigm known as the Artificial Intelligence of Things (AIoT). In this survey, we provide a systematic and comprehensive review of AIoT research. We examine AIoT literature related to sensing, computing, and networking & communication, which form the three key components of AIoT. In addition to advancements in these areas, we review domain-specific AIoT systems that are designed for various important application domains. We have also created an accompanying GitHub repository, where we compile the papers included in this survey: https://github.com/AIoT-MLSys-Lab/AIoT-Survey. This repository will be actively maintained and updated with new research as it becomes available. As both IoT and AI become increasingly critical to our society, we believe AIoT is emerging as an essential research field at the intersection of IoT and modern AI. We hope this survey will serve as a valuable resource for those engaged in AIoT research and act as a catalyst for future explorations to bridge gaps and drive advancements in this exciting field.
Abstract:Mamba and Vision Mamba (Vim) models have shown their potential as an alternative to methods based on Transformer architecture. This work introduces Fast Mamba for Vision (Famba-V), a cross-layer token fusion technique to enhance the training efficiency of Vim models. The key idea of Famba-V is to identify and fuse similar tokens across different Vim layers based on a suit of cross-layer strategies instead of simply applying token fusion uniformly across all the layers that existing works propose. We evaluate the performance of Famba-V on CIFAR-100. Our results show that Famba-V is able to enhance the training efficiency of Vim models by reducing both training time and peak memory usage during training. Moreover, the proposed cross-layer strategies allow Famba-V to deliver superior accuracy-efficiency trade-offs. These results all together demonstrate Famba-V as a promising efficiency enhancement technique for Vim models.
Abstract:Efficient inference in Large Language Models (LLMs) is impeded by the growing memory demands of key-value (KV) caching, especially for longer sequences. Traditional KV cache eviction strategies, which prioritize less critical KV-pairs based on attention scores, often degrade generation quality, leading to issues such as context loss or hallucinations. To address this, we introduce Dynamic Discriminative Operations (D2O), a novel method that utilizes two-level discriminative strategies to optimize KV cache size without fine-tuning, while preserving essential context. Initially, by observing varying densities of attention weights between shallow and deep layers, we use this insight to determine which layers should avoid excessive eviction to minimize information loss. Subsequently, for the eviction strategy in each layer, D2O innovatively incorporates a compensation mechanism that maintains a similarity threshold to re-discriminate the importance of previously discarded tokens, determining whether they should be recalled and merged with similar tokens. Our approach not only achieves significant memory savings and enhances inference throughput by more than 3x but also maintains high-quality long-text generation. Extensive experiments across various benchmarks and LLM architectures have demonstrated that D2O significantly enhances performance with a constrained KV cache budget.
Abstract:Large vision-language models (VLMs) have demonstrated remarkable abilities in understanding everyday content. However, their performance in the domain of art, particularly culturally rich art forms, remains less explored. As a pearl of human wisdom and creativity, art encapsulates complex cultural narratives and symbolism. In this paper, we offer the Pun Rebus Art Dataset, a multimodal dataset for art understanding deeply rooted in traditional Chinese culture. We focus on three primary tasks: identifying salient visual elements, matching elements with their symbolic meanings, and explanations for the conveyed messages. Our evaluation reveals that state-of-the-art VLMs struggle with these tasks, often providing biased and hallucinated explanations and showing limited improvement through in-context learning. By releasing the Pun Rebus Art Dataset, we aim to facilitate the development of VLMs that can better understand and interpret culturally specific content, promoting greater inclusiveness beyond English-based corpora.
Abstract:Automatic radiology report generation can significantly benefit the labor-intensive process of report writing by radiologists, especially for 3D radiographs like CT scans, which are crucial for broad clinical diagnostics yet underexplored compared to 2D radiographs. Existing methods often handle 3D volumes either slice-wise or with aggressive downsampling due to current GPU memory limitations, which results in a loss of the inherent 3D nature and critical details. To overcome these issues, we introduce a novel framework that efficiently and effectively generates radiology reports for high-resolution (HR) 3D volumes, based on large language models (LLMs). Specifically, our framework utilizes low-resolution (LR) visual tokens as queries to mine information from HR tokens, preserving detailed HR information while reducing computational costs by only processing HR informed LR visual queries. Further benefiting the field, we curate and release BIMCV-RG, a new dataset with 5,328 HR 3D volumes and paired reports, establishing the first benchmarks for report generation from 3D HR medical images. Our method consistently surpasses existing methods on this benchmark across three different settings: normal-resolution, high-resolution inputs, and zero-shot domain transfer, all at an acceptable computational cost, trainable on a single A100-80G.
Abstract:Recent studies have noted an intriguing phenomenon termed Neural Collapse, that is, when the neural networks establish the right correlation between feature spaces and the training targets, their last-layer features, together with the classifier weights, will collapse into a stable and symmetric structure. In this paper, we extend the investigation of Neural Collapse to the biased datasets with imbalanced attributes. We observe that models will easily fall into the pitfall of shortcut learning and form a biased, non-collapsed feature space at the early period of training, which is hard to reverse and limits the generalization capability. To tackle the root cause of biased classification, we follow the recent inspiration of prime training, and propose an avoid-shortcut learning framework without additional training complexity. With well-designed shortcut primes based on Neural Collapse structure, the models are encouraged to skip the pursuit of simple shortcuts and naturally capture the intrinsic correlations. Experimental results demonstrate that our method induces better convergence properties during training, and achieves state-of-the-art generalization performance on both synthetic and real-world biased datasets.
Abstract:Image-text retrieval (ITR) plays a significant role in making informed decisions for various remote sensing (RS) applications. Nonetheless, creating ITR datasets containing vision and language modalities not only requires significant geo-spatial sampling area but also varing categories and detailed descriptions. To this end, we introduce an image caption dataset LuojiaHOG, which is geospatial-aware, label-extension-friendly and comprehensive-captioned. LuojiaHOG involves the hierarchical spatial sampling, extensible classification system to Open Geospatial Consortium (OGC) standards, and detailed caption generation. In addition, we propose a CLIP-based Image Semantic Enhancement Network (CISEN) to promote sophisticated ITR. CISEN consists of two components, namely dual-path knowledge transfer and progressive cross-modal feature fusion. Comprehensive statistics on LuojiaHOG reveal the richness in sampling diversity, labels quantity and descriptions granularity. The evaluation on LuojiaHOG is conducted across various state-of-the-art ITR models, including ALBEF, ALIGN, CLIP, FILIP, Wukong, GeoRSCLIP and CISEN. We use second- and third-level labels to evaluate these vision-language models through adapter-tuning and CISEN demonstrates superior performance. For instance, it achieves the highest scores with WMAP@5 of 88.47\% and 87.28\% on third-level ITR tasks, respectively. In particular, CISEN exhibits an improvement of approximately 1.3\% and 0.9\% in terms of WMAP@5 compared to its baseline. These findings highlight CISEN advancements accurately retrieving pertinent information across image and text. LuojiaHOG and CISEN can serve as a foundational resource for future RS image-text alignment research, facilitating a wide range of vision-language applications.
Abstract:The advancements in Large Language Models (LLMs) have been hindered by their substantial sizes, which necessitate LLM compression methods for practical deployment. Singular Value Decomposition (SVD) offers a promising solution for LLM compression. However, state-of-the-art SVD-based LLM compression methods have two key limitations: truncating smaller singular values may lead to higher compression loss, and the lack of update on the remaining model parameters after SVD truncation. In this work, we propose SVD-LLM, a new SVD-based LLM compression method that addresses the limitations of existing methods. SVD-LLM incorporates a truncation-aware data whitening strategy to ensure a direct mapping between singular values and compression loss. Moreover, SVD-LLM adopts a layer-wise closed-form model parameter update strategy to compensate for accuracy degradation caused by SVD truncation. We evaluate SVD-LLM on a total of 11 datasets and seven models from three different LLM families at four different scales. Our results demonstrate the superiority of SVD-LLM over state-of-the-arts, especially at high model compression ratios. The source code is available at https://github.com/AIoT-MLSys-Lab/SVD-LLM.
Abstract:Electrocardiogram (ECG) serves as the primary non-invasive diagnostic tool for cardiac conditions monitoring, are crucial in assisting clinicians. Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation, which is not only time-consuming but also requires clinical expertise. To automate ECG report generation and ensure its versatility, we propose the Multimodal ECG Instruction Tuning (MEIT) framework, the \textit{first} attempt to tackle ECG report generation with LLMs and multimodal instructions. To facilitate future research, we establish a benchmark to evaluate MEIT with various LLMs backbones across two large-scale ECG datasets. Our approach uniquely aligns the representations of the ECG signal and the report, and we conduct extensive experiments to benchmark MEIT with nine open source LLMs, using more than 800,000 ECG reports. MEIT's results underscore the superior performance of instruction-tuned LLMs, showcasing their proficiency in quality report generation, zero-shot capabilities, and resilience to signal perturbation. These findings emphasize the efficacy of our MEIT framework and its potential for real-world clinical application.
Abstract:Query Auto-Completion(QAC), as an important part of the modern search engine, plays a key role in complementing user queries and helping them refine their search intentions.Today's QAC systems in real-world scenarios face two major challenges:1)intention equivocality(IE): during the user's typing process,the prefix often contains a combination of characters and subwords, which makes the current intention ambiguous and difficult to model.2)intention transfer (IT):previous works make personalized recommendations based on users' historical sequences, but ignore the search intention transfer.However, the current intention extracted from prefix may be contrary to the historical preferences.