Abstract:Accurate detection and segmentation of gastrointestinal bleeding are critical for diagnosing diseases such as peptic ulcers and colorectal cancer. This study proposes a two-stage framework that decouples classification and grounding to address the inherent challenges posed by traditional Multi-Task Learning models, which jointly optimizes classification and segmentation. Our approach separates these tasks to achieve targeted optimization for each. The model first classifies images as bleeding or non-bleeding, thereby isolating subsequent grounding from inter-task interference and label heterogeneity. To further enhance performance, we incorporate Stochastic Weight Averaging and Test-Time Augmentation, which improve model robustness against domain shifts and annotation inconsistencies. Our method is validated on the Auto-WCEBleedGen Challenge V2 Challenge dataset and achieving second place. Experimental results demonstrate significant improvements in classification accuracy and segmentation precision, especially on sequential datasets with consistent visual patterns. This study highlights the practical benefits of a two-stage strategy for medical image analysis and sets a new standard for GI bleeding detection and segmentation. Our code is publicly available at this GitHub repository.
Abstract:Fusarium Head Blight (FHB) is a serious fungal disease affecting wheat (including durum), barley, oats, other small cereal grains, and corn. Effective monitoring and accurate detection of FHB are crucial to ensuring stable and reliable food security. Traditionally, trained agronomists and surveyors perform manual identification, a method that is labor-intensive, impractical, and challenging to scale. With the advancement of deep learning and Hyper-spectral Imaging (HSI) and Remote Sensing (RS) technologies, employing deep learning, particularly Convolutional Neural Networks (CNNs), has emerged as a promising solution. Notably, wheat infected with serious FHB may exhibit significant differences on the spectral compared to mild FHB one, which is particularly advantageous for hyperspectral image-based methods. In this study, we propose a self-unsupervised classification method based on HSI endmember extraction strategy and top-K bands selection, designed to analyze material signatures in HSIs to derive discriminative feature representations. This approach does not require expensive device or complicate algorithm design, making it more suitable for practical uses. Our method has been effectively validated in the Beyond Visible Spectrum: AI for Agriculture Challenge 2024. The source code is easy to reproduce and available at {https://github.com/VanLinLin/Automated-Crop-Disease-Diagnosis-from-Hyperspectral-Imagery-3rd}.