Abstract:We propose CLIP-Actor, a text-driven motion recommendation and neural mesh stylization system for human mesh animation. CLIP-Actor animates a 3D human mesh to conform to a text prompt by recommending a motion sequence and learning mesh style attributes. Prior work fails to generate plausible results when the artist-designed mesh content does not conform to the text from the beginning. Instead, we build a text-driven human motion recommendation system by leveraging a large-scale human motion dataset with language labels. Given a natural language prompt, CLIP-Actor first suggests a human motion that conforms to the prompt in a coarse-to-fine manner. Then, we propose a synthesize-through-optimization method that detailizes and texturizes a recommended mesh sequence in a disentangled way from the pose of each frame. It allows the style attribute to conform to the prompt in a temporally-consistent and pose-agnostic manner. The decoupled neural optimization also enables spatio-temporal view augmentation from multi-frame human motion. We further propose the mask-weighted embedding attention, which stabilizes the optimization process by rejecting distracting renders containing scarce foreground pixels. We demonstrate that CLIP-Actor produces plausible and human-recognizable style 3D human mesh in motion with detailed geometry and texture from a natural language prompt.
Abstract:We propose an end-to-end unified 3D mesh recovery of humans and quadruped animals trained in a weakly-supervised way. Unlike recent work focusing on a single target class only, we aim to recover 3D mesh of broader classes with a single multi-task model. However, there exists no dataset that can directly enable multi-task learning due to the absence of both human and animal annotations for a single object, e.g., a human image does not have animal pose annotations; thus, we have to devise a new way to exploit heterogeneous datasets. To make the unstable disjoint multi-task learning jointly trainable, we propose to exploit the morphological similarity between humans and animals, motivated by animal exercise where humans imitate animal poses. We realize the morphological similarity by semantic correspondences, called sub-keypoint, which enables joint training of human and animal mesh regression branches. Besides, we propose class-sensitive regularization methods to avoid a mean-shape bias and to improve the distinctiveness across multi-classes. Our method performs favorably against recent uni-modal models on various human and animal datasets while being far more compact.