We propose an explainable probabilistic framework for characterizing spoofed speech by decomposing it into probabilistic attribute embeddings. Unlike raw high-dimensional countermeasure embeddings, which lack interpretability, the proposed probabilistic attribute embeddings aim to detect specific speech synthesizer components, represented through high-level attributes and their corresponding values. We use these probabilistic embeddings with four classifier back-ends to address two downstream tasks: spoofing detection and spoofing attack attribution. The former is the well-known bonafide-spoof detection task, whereas the latter seeks to identify the source method (generator) of a spoofed utterance. We additionally use Shapley values, a widely used technique in machine learning, to quantify the relative contribution of each attribute value to the decision-making process in each task. Results on the ASVspoof2019 dataset demonstrate the substantial role of duration and conversion modeling in spoofing detection; and waveform generation and speaker modeling in spoofing attack attribution. In the detection task, the probabilistic attribute embeddings achieve $99.7\%$ balanced accuracy and $0.22\%$ equal error rate (EER), closely matching the performance of raw embeddings ($99.9\%$ balanced accuracy and $0.22\%$ EER). Similarly, in the attribution task, our embeddings achieve $90.23\%$ balanced accuracy and $2.07\%$ EER, compared to $90.16\%$ and $2.11\%$ with raw embeddings. These results demonstrate that the proposed framework is both inherently explainable by design and capable of achieving performance comparable to raw CM embeddings.