Abstract:ASVspoof 5 is the fifth edition in a series of challenges that promote the study of speech spoofing and deepfake attacks, and the design of detection solutions. Compared to previous challenges, the ASVspoof 5 database is built from crowdsourced data collected from a vastly greater number of speakers in diverse acoustic conditions. Attacks, also crowdsourced, are generated and tested using surrogate detection models, while adversarial attacks are incorporated for the first time. New metrics support the evaluation of spoofing-robust automatic speaker verification (SASV) as well as stand-alone detection solutions, i.e., countermeasures without ASV. We describe the two challenge tracks, the new database, the evaluation metrics, baselines, and the evaluation platform, and present a summary of the results. Attacks significantly compromise the baseline systems, while submissions bring substantial improvements.
Abstract:Recent progress in generative AI technology has made audio deepfakes remarkably more realistic. While current research on anti-spoofing systems primarily focuses on assessing whether a given audio sample is fake or genuine, there has been limited attention on discerning the specific techniques to create the audio deepfakes. Algorithms commonly used in audio deepfake generation, like text-to-speech (TTS) and voice conversion (VC), undergo distinct stages including input processing, acoustic modeling, and waveform generation. In this work, we introduce a system designed to classify various spoofing attributes, capturing the distinctive features of individual modules throughout the entire generation pipeline. We evaluate our system on two datasets: the ASVspoof 2019 Logical Access and the Multi-Language Audio Anti-Spoofing Dataset (MLAAD). Results from both experiments demonstrate the robustness of the system to identify the different spoofing attributes of deepfake generation systems.
Abstract:The current automatic speaker verification (ASV) task involves making binary decisions on two types of trials: target and non-target. However, emerging advancements in speech generation technology pose significant threats to the reliability of ASV systems. This study investigates whether ASV effortlessly acquires robustness against spoofing attacks (i.e., zero-shot capability) by systematically exploring diverse ASV systems and spoofing attacks, ranging from traditional to cutting-edge techniques. Through extensive analyses conducted on eight distinct ASV systems and 29 spoofing attack systems, we demonstrate that the evolution of ASV inherently incorporates defense mechanisms against spoofing attacks. Nevertheless, our findings also underscore that the advancement of spoofing attacks far outpaces that of ASV systems, hence necessitating further research on spoofing-robust ASV methodologies.
Abstract:Recent research has highlighted a key issue in speech deepfake detection: models trained on one set of deepfakes perform poorly on others. The question arises: is this due to the continuously improving quality of Text-to-Speech (TTS) models, i.e., are newer DeepFakes just 'harder' to detect? Or, is it because deepfakes generated with one model are fundamentally different to those generated using another model? We answer this question by decomposing the performance gap between in-domain and out-of-domain test data into 'hardness' and 'difference' components. Experiments performed using ASVspoof databases indicate that the hardness component is practically negligible, with the performance gap being attributed primarily to the difference component. This has direct implications for real-world deepfake detection, highlighting that merely increasing model capacity, the currently-dominant research trend, may not effectively address the generalization challenge.
Abstract:Presentation attack (spoofing) detection (PAD) typically operates alongside biometric verification to improve reliablity in the face of spoofing attacks. Even though the two sub-systems operate in tandem to solve the single task of reliable biometric verification, they address different detection tasks and are hence typically evaluated separately. Evidence shows that this approach is suboptimal. We introduce a new metric for the joint evaluation of PAD solutions operating in situ with biometric verification. In contrast to the tandem detection cost function proposed recently, the new tandem equal error rate (t-EER) is parameter free. The combination of two classifiers nonetheless leads to a \emph{set} of operating points at which false alarm and miss rates are equal and also dependent upon the prevalence of attacks. We therefore introduce the \emph{concurrent} t-EER, a unique operating point which is invariable to the prevalence of attacks. Using both modality (and even application) agnostic simulated scores, as well as real scores for a voice biometrics application, we demonstrate application of the t-EER to a wide range of biometric system evaluations under attack. The proposed approach is a strong candidate metric for the tandem evaluation of PAD systems and biometric comparators.
Abstract:We present Malafide, a universal adversarial attack against automatic speaker verification (ASV) spoofing countermeasures (CMs). By introducing convolutional noise using an optimised linear time-invariant filter, Malafide attacks can be used to compromise CM reliability while preserving other speech attributes such as quality and the speaker's voice. In contrast to other adversarial attacks proposed recently, Malafide filters are optimised independently of the input utterance and duration, are tuned instead to the underlying spoofing attack, and require the optimisation of only a small number of filter coefficients. Even so, they degrade CM performance estimates by an order of magnitude, even in black-box settings, and can also be configured to overcome integrated CM and ASV subsystems. Integrated solutions that use self-supervised learning CMs, however, are more robust, under both black-box and white-box settings.
Abstract:This study aims to develop a single integrated spoofing-aware speaker verification (SASV) embeddings that satisfy two aspects. First, rejecting non-target speakers' input as well as target speakers' spoofed inputs should be addressed. Second, competitive performance should be demonstrated compared to the fusion of automatic speaker verification (ASV) and countermeasure (CM) embeddings, which outperformed single embedding solutions by a large margin in the SASV2022 challenge. We analyze that the inferior performance of single SASV embeddings comes from insufficient amount of training data and distinct nature of ASV and CM tasks. To this end, we propose a novel framework that includes multi-stage training and a combination of loss functions. Copy synthesis, combined with several vocoders, is also exploited to address the lack of spoofed data. Experimental results show dramatic improvements, achieving a SASV-EER of 1.06% on the evaluation protocol of the SASV2022 challenge.
Abstract:Spoofing countermeasure (CM) and automatic speaker verification (ASV) sub-systems can be used in tandem with a backend classifier as a solution to the spoofing aware speaker verification (SASV) task. The two sub-systems are typically trained independently to solve different tasks. While our previous work demonstrated the potential of joint optimisation, it also showed a tendency to over-fit to speakers and a lack of sub-system complementarity. Using only a modest quantity of auxiliary data collected from new speakers, we show that joint optimisation degrades the performance of separate CM and ASV sub-systems, but that it nonetheless improves complementarity, thereby delivering superior SASV performance. Using standard SASV evaluation data and protocols, joint optimisation reduces the equal error rate by 27\% relative to performance obtained using fixed, independently-optimised sub-systems under like-for-like training conditions.
Abstract:Deep learning has brought impressive progress in the study of both automatic speaker verification (ASV) and spoofing countermeasures (CM). Although solutions are mutually dependent, they have typically evolved as standalone sub-systems whereby CM solutions are usually designed for a fixed ASV system. The work reported in this paper aims to gauge the improvements in reliability that can be gained from their closer integration. Results derived using the popular ASVspoof2019 dataset indicate that the equal error rate (EER) of a state-of-the-art ASV system degrades from 1.63% to 23.83% when the evaluation protocol is extended with spoofed trials.%subjected to spoofing attacks. However, even the straightforward integration of ASV and CM systems in the form of score-sum and deep neural network-based fusion strategies reduce the EER to 1.71% and 6.37%, respectively. The new Spoofing-Aware Speaker Verification (SASV) challenge has been formed to encourage greater attention to the integration of ASV and CM systems as well as to provide a means to benchmark different solutions.
Abstract:The first spoofing-aware speaker verification (SASV) challenge aims to integrate research efforts in speaker verification and anti-spoofing. We extend the speaker verification scenario by introducing spoofed trials to the usual set of target and impostor trials. In contrast to the established ASVspoof challenge where the focus is upon separate, independently optimised spoofing detection and speaker verification sub-systems, SASV targets the development of integrated and jointly optimised solutions. Pre-trained spoofing detection and speaker verification models are provided as open source and are used in two baseline SASV solutions. Both models and baselines are freely available to participants and can be used to develop back-end fusion approaches or end-to-end solutions. Using the provided common evaluation protocol, 23 teams submitted SASV solutions. When assessed with target, bona fide non-target and spoofed non-target trials, the top-performing system reduces the equal error rate of a conventional speaker verification system from 23.83% to 0.13%. SASV challenge results are a testament to the reliability of today's state-of-the-art approaches to spoofing detection and speaker verification.