Abstract:When it comes to authentication in speaker verification systems, not all utterances are created equal. It is essential to estimate the quality of test utterances in order to account for varying acoustic conditions. In addition to the net-speech duration of an utterance, it is observed in this paper that phonetic richness is also a key indicator of utterance quality, playing a significant role in accurate speaker verification. Several phonetic histogram based formulations of phonetic richness are explored using transcripts obtained from an automatic speaker recognition system. The proposed phonetic richness measure is found to be positively correlated with voice authentication scores across evaluation benchmarks. Additionally, the proposed measure in combination with net speech helps in calibrating the speaker verification scores, obtaining a relative EER improvement of 5.8% on the Voxceleb1 evaluation protocol. The proposed phonetic richness based calibration provides higher benefit for short utterances with repeated words.
Abstract:Recent progress in generative AI technology has made audio deepfakes remarkably more realistic. While current research on anti-spoofing systems primarily focuses on assessing whether a given audio sample is fake or genuine, there has been limited attention on discerning the specific techniques to create the audio deepfakes. Algorithms commonly used in audio deepfake generation, like text-to-speech (TTS) and voice conversion (VC), undergo distinct stages including input processing, acoustic modeling, and waveform generation. In this work, we introduce a system designed to classify various spoofing attributes, capturing the distinctive features of individual modules throughout the entire generation pipeline. We evaluate our system on two datasets: the ASVspoof 2019 Logical Access and the Multi-Language Audio Anti-Spoofing Dataset (MLAAD). Results from both experiments demonstrate the robustness of the system to identify the different spoofing attributes of deepfake generation systems.