Abstract:As industrial products become abundant and sophisticated, visual industrial defect detection receives much attention, including two-dimensional and three-dimensional visual feature modeling. Traditional methods use statistical analysis, abnormal data synthesis modeling, and generation-based models to separate product defect features and complete defect detection. Recently, the emergence of foundation models has brought visual and textual semantic prior knowledge. Many methods are based on foundation models (FM) to improve the accuracy of detection, but at the same time, increase model complexity and slow down inference speed. Some FM-based methods have begun to explore lightweight modeling ways, which have gradually attracted attention and deserve to be systematically analyzed. In this paper, we conduct a systematic survey with comparisons and discussions of foundation model methods from different aspects and briefly review non-foundation model (NFM) methods recently published. Furthermore, we discuss the differences between FM and NFM methods from training objectives, model structure and scale, model performance, and potential directions for future exploration. Through comparison, we find FM methods are more suitable for few-shot and zero-shot learning, which are more in line with actual industrial application scenarios and worthy of in-depth research.
Abstract:As a common mental disorder, depression is a leading cause of various diseases worldwide. Early detection and treatment of depression can dramatically promote remission and prevent relapse. However, conventional ways of depression diagnosis require considerable human effort and cause economic burden, while still being prone to misdiagnosis. On the other hand, recent studies report that physical characteristics are major contributors to the diagnosis of depression, which inspires us to mine the internal relationship by neural networks instead of relying on clinical experiences. In this paper, neural networks are constructed to predict depression from physical characteristics. Two initialization methods are examined - Xaiver and Kaiming initialization. Experimental results show that a 3-layers neural network with Kaiming initialization achieves $83\%$ accuracy.