Abstract:Text-to-image models, such as Stable Diffusion (SD), undergo iterative updates to improve image quality and address concerns such as safety. Improvements in image quality are straightforward to assess. However, how model updates resolve existing concerns and whether they raise new questions remain unexplored. This study takes an initial step in investigating the evolution of text-to-image models from the perspectives of safety, bias, and authenticity. Our findings, centered on Stable Diffusion, indicate that model updates paint a mixed picture. While updates progressively reduce the generation of unsafe images, the bias issue, particularly in gender, intensifies. We also find that negative stereotypes either persist within the same Non-White race group or shift towards other Non-White race groups through SD updates, yet with minimal association of these traits with the White race group. Additionally, our evaluation reveals a new concern stemming from SD updates: State-of-the-art fake image detectors, initially trained for earlier SD versions, struggle to identify fake images generated by updated versions. We show that fine-tuning these detectors on fake images generated by updated versions achieves at least 96.6\% accuracy across various SD versions, addressing this issue. Our insights highlight the importance of continued efforts to mitigate biases and vulnerabilities in evolving text-to-image models.
Abstract:Recently, autonomous agents built on large language models (LLMs) have experienced significant development and are being deployed in real-world applications. These agents can extend the base LLM's capabilities in multiple ways. For example, a well-built agent using GPT-3.5-Turbo as its core can outperform the more advanced GPT-4 model by leveraging external components. More importantly, the usage of tools enables these systems to perform actions in the real world, moving from merely generating text to actively interacting with their environment. Given the agents' practical applications and their ability to execute consequential actions, it is crucial to assess potential vulnerabilities. Such autonomous systems can cause more severe damage than a standalone language model if compromised. While some existing research has explored harmful actions by LLM agents, our study approaches the vulnerability from a different perspective. We introduce a new type of attack that causes malfunctions by misleading the agent into executing repetitive or irrelevant actions. We conduct comprehensive evaluations using various attack methods, surfaces, and properties to pinpoint areas of susceptibility. Our experiments reveal that these attacks can induce failure rates exceeding 80\% in multiple scenarios. Through attacks on implemented and deployable agents in multi-agent scenarios, we accentuate the realistic risks associated with these vulnerabilities. To mitigate such attacks, we propose self-examination detection methods. However, our findings indicate these attacks are difficult to detect effectively using LLMs alone, highlighting the substantial risks associated with this vulnerability.
Abstract:The increasing demand for customized Large Language Models (LLMs) has led to the development of solutions like GPTs. These solutions facilitate tailored LLM creation via natural language prompts without coding. However, the trustworthiness of third-party custom versions of LLMs remains an essential concern. In this paper, we propose the first instruction backdoor attacks against applications integrated with untrusted customized LLMs (e.g., GPTs). Specifically, these attacks embed the backdoor into the custom version of LLMs by designing prompts with backdoor instructions, outputting the attacker's desired result when inputs contain the pre-defined triggers. Our attack includes 3 levels of attacks: word-level, syntax-level, and semantic-level, which adopt different types of triggers with progressive stealthiness. We stress that our attacks do not require fine-tuning or any modification to the backend LLMs, adhering strictly to GPTs development guidelines. We conduct extensive experiments on 4 prominent LLMs and 5 benchmark text classification datasets. The results show that our instruction backdoor attacks achieve the desired attack performance without compromising utility. Additionally, we propose an instruction-ignoring defense mechanism and demonstrate its partial effectiveness in mitigating such attacks. Our findings highlight the vulnerability and the potential risks of LLM customization such as GPTs.
Abstract:To prevent the mischievous use of synthetic (fake) point clouds produced by generative models, we pioneer the study of detecting point cloud authenticity and attributing them to their sources. We propose an attribution framework, FAKEPCD, to attribute (fake) point clouds to their respective generative models (or real-world collections). The main idea of FAKEPCD is to train an attribution model that learns the point cloud features from different sources and further differentiates these sources using an attribution signal. Depending on the characteristics of the training point clouds, namely, sources and shapes, we formulate four attribution scenarios: close-world, open-world, single-shape, and multiple-shape, and evaluate FAKEPCD's performance in each scenario. Extensive experimental results demonstrate the effectiveness of FAKEPCD on source attribution across different scenarios. Take the open-world attribution as an example, FAKEPCD attributes point clouds to known sources with an accuracy of 0.82-0.98 and to unknown sources with an accuracy of 0.73-1.00. Additionally, we introduce an approach to visualize unique patterns (fingerprints) in point clouds associated with each source. This explains how FAKEPCD recognizes point clouds from various sources by focusing on distinct areas within them. Overall, we hope our study establishes a baseline for the source attribution of (fake) point clouds.
Abstract:Large language models (LLMs) have demonstrated superior performance compared to previous methods on various tasks, and often serve as the foundation models for many researches and services. However, the untrustworthy third-party LLMs may covertly introduce vulnerabilities for downstream tasks. In this paper, we explore the vulnerability of LLMs through the lens of backdoor attacks. Different from existing backdoor attacks against LLMs, ours scatters multiple trigger keys in different prompt components. Such a Composite Backdoor Attack (CBA) is shown to be stealthier than implanting the same multiple trigger keys in only a single component. CBA ensures that the backdoor is activated only when all trigger keys appear. Our experiments demonstrate that CBA is effective in both natural language processing (NLP) and multimodal tasks. For instance, with $3\%$ poisoning samples against the LLaMA-7B model on the Emotion dataset, our attack achieves a $100\%$ Attack Success Rate (ASR) with a False Triggered Rate (FTR) below $2.06\%$ and negligible model accuracy degradation. The unique characteristics of our CBA can be tailored for various practical scenarios, e.g., targeting specific user groups. Our work highlights the necessity of increased security research on the trustworthiness of foundation LLMs.
Abstract:Fine-tuning large pre-trained computer vision models is infeasible for resource-limited users. Visual prompt learning (VPL) has thus emerged to provide an efficient and flexible alternative to model fine-tuning through Visual Prompt as a Service (VPPTaaS). Specifically, the VPPTaaS provider optimizes a visual prompt given downstream data, and downstream users can use this prompt together with the large pre-trained model for prediction. However, this new learning paradigm may also pose security risks when the VPPTaaS provider instead provides a malicious visual prompt. In this paper, we take the first step to explore such risks through the lens of backdoor attacks. Specifically, we propose BadVisualPrompt, a simple yet effective backdoor attack against VPL. For example, poisoning $5\%$ CIFAR10 training data leads to above $99\%$ attack success rates with only negligible model accuracy drop by $1.5\%$. In particular, we identify and then address a new technical challenge related to interactions between the backdoor trigger and visual prompt, which does not exist in conventional, model-level backdoors. Moreover, we provide in-depth analyses of seven backdoor defenses from model, prompt, and input levels. Overall, all these defenses are either ineffective or impractical to mitigate our BadVisualPrompt, implying the critical vulnerability of VPL.
Abstract:The spread of toxic content online is an important problem that has adverse effects on user experience online and in our society at large. Motivated by the importance and impact of the problem, research focuses on developing solutions to detect toxic content, usually leveraging machine learning (ML) models trained on human-annotated datasets. While these efforts are important, these models usually do not generalize well and they can not cope with new trends (e.g., the emergence of new toxic terms). Currently, we are witnessing a shift in the approach to tackling societal issues online, particularly leveraging large language models (LLMs) like GPT-3 or T5 that are trained on vast corpora and have strong generalizability. In this work, we investigate how we can use LLMs and prompt learning to tackle the problem of toxic content, particularly focusing on three tasks; 1) Toxicity Classification, 2) Toxic Span Detection, and 3) Detoxification. We perform an extensive evaluation over five model architectures and eight datasets demonstrating that LLMs with prompt learning can achieve similar or even better performance compared to models trained on these specific tasks. We find that prompt learning achieves around 10\% improvement in the toxicity classification task compared to the baselines, while for the toxic span detection task we find better performance to the best baseline (0.643 vs. 0.640 in terms of $F_1$-score). Finally, for the detoxification task, we find that prompt learning can successfully reduce the average toxicity score (from 0.775 to 0.213) while preserving semantic meaning.
Abstract:The misuse of large language models (LLMs) has garnered significant attention from the general public and LLM vendors. In response, efforts have been made to align LLMs with human values and intent use. However, a particular type of adversarial prompts, known as jailbreak prompt, has emerged and continuously evolved to bypass the safeguards and elicit harmful content from LLMs. In this paper, we conduct the first measurement study on jailbreak prompts in the wild, with 6,387 prompts collected from four platforms over six months. Leveraging natural language processing technologies and graph-based community detection methods, we discover unique characteristics of jailbreak prompts and their major attack strategies, such as prompt injection and privilege escalation. We also observe that jailbreak prompts increasingly shift from public platforms to private ones, posing new challenges for LLM vendors in proactive detection. To assess the potential harm caused by jailbreak prompts, we create a question set comprising 46,800 samples across 13 forbidden scenarios. Our experiments show that current LLMs and safeguards cannot adequately defend jailbreak prompts in all scenarios. Particularly, we identify two highly effective jailbreak prompts which achieve 0.99 attack success rates on ChatGPT (GPT-3.5) and GPT-4, and they have persisted online for over 100 days. Our work sheds light on the severe and evolving threat landscape of jailbreak prompts. We hope our study can facilitate the research community and LLM vendors in promoting safer and regulated LLMs.
Abstract:Graph generative models become increasingly effective for data distribution approximation and data augmentation. While they have aroused public concerns about their malicious misuses or misinformation broadcasts, just as what Deepfake visual and auditory media has been delivering to society. Hence it is essential to regulate the prevalence of generated graphs. To tackle this problem, we pioneer the formulation of the generated graph detection problem to distinguish generated graphs from real ones. We propose the first framework to systematically investigate a set of sophisticated models and their performance in four classification scenarios. Each scenario switches between seen and unseen datasets/generators during testing to get closer to real-world settings and progressively challenge the classifiers. Extensive experiments evidence that all the models are qualified for generated graph detection, with specific models having advantages in specific scenarios. Resulting from the validated generality and oblivion of the classifiers to unseen datasets/generators, we draw a safe conclusion that our solution can sustain for a decent while to curb generated graph misuses.
Abstract:Building advanced machine learning (ML) models requires expert knowledge and many trials to discover the best architecture and hyperparameter settings. Previous work demonstrates that model information can be leveraged to assist other attacks, such as membership inference, generating adversarial examples. Therefore, such information, e.g., hyperparameters, should be kept confidential. It is well known that an adversary can leverage a target ML model's output to steal the model's information. In this paper, we discover a new side channel for model information stealing attacks, i.e., models' scientific plots which are extensively used to demonstrate model performance and are easily accessible. Our attack is simple and straightforward. We leverage the shadow model training techniques to generate training data for the attack model which is essentially an image classifier. Extensive evaluation on three benchmark datasets shows that our proposed attack can effectively infer the architecture/hyperparameters of image classifiers based on convolutional neural network (CNN) given the scientific plot generated from it. We also reveal that the attack's success is mainly caused by the shape of the scientific plots, and further demonstrate that the attacks are robust in various scenarios. Given the simplicity and effectiveness of the attack method, our study indicates scientific plots indeed constitute a valid side channel for model information stealing attacks. To mitigate the attacks, we propose several defense mechanisms that can reduce the original attacks' accuracy while maintaining the plot utility. However, such defenses can still be bypassed by adaptive attacks.