Abstract:Low-rank factorization is a popular model compression technique that minimizes the error $\delta$ between approximated and original weight matrices. Despite achieving performances close to the original models when $\delta$ is optimized, a performance discrepancy remains due to the separate optimization processes for low-rank factorization and model performance, resulting in unavoidable losses. We address this issue by introducing a novel joint optimization strategy for lossless low-rank weight factorization, which, for the first time, enhances the model's performance beyond the original. Our approach begins with a theoretical analysis of the relationship between low-rank factorization and model optimization objectives, establishing a precise perturbation range for matrix factorization errors on model performance. This challenge is then reformulated as a numerical rank deficiency problem with inequality constraints and develop a joint objective that simultaneously addresses factorization error and model performance. Based on the above analysis, we propose two optimization algorithms: \textbf{a lossless optimization algorithm} that maximizes model accuracy while ensuring compression, and \textbf{a compact optimization algorithm} that minimizes model size while preserving performance. These algorithms do not require fine-tuning and can directly compress numerous deep models to achieve lossless results. Our methods demonstrate robust efficacy across various vision and language tasks. For example, the compressed model reduced by 70\% on ResNext50 outperforms the original. Our code will be made public.
Abstract:This work focus on how to stabilize and lossless model compression, aiming to reduce model complexity and enhance efficiency without sacrificing performance due to compression errors. A key challenge is effectively leveraging compression errors and defining the boundaries for lossless compression to minimize model loss. i.e., compression for better. Currently, there is no systematic approach to determining this error boundary or understanding its specific impact on model performance. We propose a general \textbf{L}oss\textbf{L}ess \textbf{C}ompression theoretical framework (\textbf{LLC}), which further delineates the compression neighborhood and higher-order analysis boundaries through the total differential, thereby specifying the error range within which a model can be compressed without loss. To verify the effectiveness of LLC, we apply various compression techniques, including quantization and decomposition. Specifically, for quantization, we reformulate the classic quantization search problem as a grouped knapsack problem within the lossless neighborhood, achieving lossless quantization while improving computational efficiency. For decomposition, LLC addresses the approximation problem under low-rank constraints, automatically determining the rank for each layer and producing lossless low-rank models. We conduct extensive experiments on multiple neural network architectures on different datasets. The results show that without fancy tricks, LLC can effectively achieve lossless model compression. Our code will be made publicly.
Abstract:Post-Training Quantization (PTQ) converts pre-trained Full-Precision (FP) models into quantized versions without training. While existing methods reduce size and computational costs, they also significantly degrade performance and quantization efficiency at extremely low settings due to quantization noise. We introduce a deep model series expansion framework to address this issue, enabling rapid and accurate approximation of unquantized models without calibration sets or fine-tuning. This is the first use of series expansion for neural network quantization. Specifically, our method expands the FP model into multiple low-bit basis models. To ensure accurate quantization, we develop low-bit basis model expansions at different granularities (tensor, layer, model), and theoretically confirm their convergence to the dense model, thus restoring FP model accuracy. Additionally, we design AbelianAdd/Mul operations between isomorphic models in the low-bit expansion, forming an Abelian group to ensure operation parallelism and commutativity. The experiments show that our algorithm achieves state-of-the-art performance in low-bit settings; for example, 4-bit quantization of ResNet-50 surpasses the original accuracy, reaching 77.03%. The code will be made public.
Abstract:Recently, autonomous agents built on large language models (LLMs) have experienced significant development and are being deployed in real-world applications. These agents can extend the base LLM's capabilities in multiple ways. For example, a well-built agent using GPT-3.5-Turbo as its core can outperform the more advanced GPT-4 model by leveraging external components. More importantly, the usage of tools enables these systems to perform actions in the real world, moving from merely generating text to actively interacting with their environment. Given the agents' practical applications and their ability to execute consequential actions, it is crucial to assess potential vulnerabilities. Such autonomous systems can cause more severe damage than a standalone language model if compromised. While some existing research has explored harmful actions by LLM agents, our study approaches the vulnerability from a different perspective. We introduce a new type of attack that causes malfunctions by misleading the agent into executing repetitive or irrelevant actions. We conduct comprehensive evaluations using various attack methods, surfaces, and properties to pinpoint areas of susceptibility. Our experiments reveal that these attacks can induce failure rates exceeding 80\% in multiple scenarios. Through attacks on implemented and deployable agents in multi-agent scenarios, we accentuate the realistic risks associated with these vulnerabilities. To mitigate such attacks, we propose self-examination detection methods. However, our findings indicate these attacks are difficult to detect effectively using LLMs alone, highlighting the substantial risks associated with this vulnerability.
Abstract:As automation technologies advance, the need for compact and multi-modal sensors in robotic applications is growing. To address this demand, we introduce CompdVision, a novel sensor that combines near-field 3D visual and tactile sensing. This sensor, with dimensions of 22$\times$14$\times$14 mm, leverages the compound eye imaging system to achieve a compact form factor without compromising its dual modalities. CompdVision utilizes two types of vision units to meet diverse sensing requirements. Stereo units with far-focus lenses can see through the transparent elastomer, facilitating depth estimation beyond the contact surface, while tactile units with near-focus lenses track the movement of markers embedded in the elastomer to obtain contact deformation. Experimental results validate the sensor's superior performance in 3D visual and tactile sensing. The sensor demonstrates effective depth estimation within a 70mm range from its surface. Additionally, it registers high accuracy in tangential and normal force measurements. The dual modalities and compact design make the sensor a versatile tool for complex robotic tasks.
Abstract:While advanced machine learning (ML) models are deployed in numerous real-world applications, previous works demonstrate these models have security and privacy vulnerabilities. Various empirical research has been done in this field. However, most of the experiments are performed on target ML models trained by the security researchers themselves. Due to the high computational resource requirement for training advanced models with complex architectures, researchers generally choose to train a few target models using relatively simple architectures on typical experiment datasets. We argue that to understand ML models' vulnerabilities comprehensively, experiments should be performed on a large set of models trained with various purposes (not just the purpose of evaluating ML attacks and defenses). To this end, we propose using publicly available models with weights from the Internet (public models) for evaluating attacks and defenses on ML models. We establish a database, namely SecurityNet, containing 910 annotated image classification models. We then analyze the effectiveness of several representative attacks/defenses, including model stealing attacks, membership inference attacks, and backdoor detection on these public models. Our evaluation empirically shows the performance of these attacks/defenses can vary significantly on public models compared to self-trained models. We share SecurityNet with the research community. and advocate researchers to perform experiments on public models to better demonstrate their proposed methods' effectiveness in the future.
Abstract:Building advanced machine learning (ML) models requires expert knowledge and many trials to discover the best architecture and hyperparameter settings. Previous work demonstrates that model information can be leveraged to assist other attacks, such as membership inference, generating adversarial examples. Therefore, such information, e.g., hyperparameters, should be kept confidential. It is well known that an adversary can leverage a target ML model's output to steal the model's information. In this paper, we discover a new side channel for model information stealing attacks, i.e., models' scientific plots which are extensively used to demonstrate model performance and are easily accessible. Our attack is simple and straightforward. We leverage the shadow model training techniques to generate training data for the attack model which is essentially an image classifier. Extensive evaluation on three benchmark datasets shows that our proposed attack can effectively infer the architecture/hyperparameters of image classifiers based on convolutional neural network (CNN) given the scientific plot generated from it. We also reveal that the attack's success is mainly caused by the shape of the scientific plots, and further demonstrate that the attacks are robust in various scenarios. Given the simplicity and effectiveness of the attack method, our study indicates scientific plots indeed constitute a valid side channel for model information stealing attacks. To mitigate the attacks, we propose several defense mechanisms that can reduce the original attacks' accuracy while maintaining the plot utility. However, such defenses can still be bypassed by adaptive attacks.
Abstract:In this paper, we present a spatio-temporal tendency reasoning (STR) network for recovering human body pose and shape from videos. Previous approaches have focused on how to extend 3D human datasets and temporal-based learning to promote accuracy and temporal smoothing. Different from them, our STR aims to learn accurate and natural motion sequences in an unconstrained environment through temporal and spatial tendency and to fully excavate the spatio-temporal features of existing video data. To this end, our STR learns the representation of features in the temporal and spatial dimensions respectively, to concentrate on a more robust representation of spatio-temporal features. More specifically, for efficient temporal modeling, we first propose a temporal tendency reasoning (TTR) module. TTR constructs a time-dimensional hierarchical residual connection representation within a video sequence to effectively reason temporal sequences' tendencies and retain effective dissemination of human information. Meanwhile, for enhancing the spatial representation, we design a spatial tendency enhancing (STE) module to further learns to excite spatially time-frequency domain sensitive features in human motion information representations. Finally, we introduce integration strategies to integrate and refine the spatio-temporal feature representations. Extensive experimental findings on large-scale publically available datasets reveal that our STR remains competitive with the state-of-the-art on three datasets. Our code are available at https://github.com/Changboyang/STR.git.