Abstract:Policy gradient methods rely on a baseline to measure the relative advantage of an action, ensuring the model reinforces behaviors that outperform its current average capability. In the training of Large Language Models (LLMs) using Actor-Critic methods (e.g., PPO), this baseline is typically estimated by a Value Model (Critic) often as large as the policy model itself. However, as the policy continuously evolves, the value model requires expensive, synchronous incremental training to accurately track the shifting capabilities of the policy. To avoid this overhead, Group Relative Policy Optimization (GRPO) eliminates the coupled value model by using the average reward of a group of rollouts as the baseline; yet, this approach necessitates extensive sampling to maintain estimation stability. In this paper, we propose $V_0$, a Generalist Value Model capable of estimating the expected performance of any model on unseen prompts without requiring parameter updates. We reframe value estimation by treating the policy's dynamic capability as an explicit context input; specifically, we leverage a history of instruction-performance pairs to dynamically profile the model, departing from the traditional paradigm that relies on parameter fitting to perceive capability shifts. Focusing on value estimation at State Zero (i.e., the initial prompt, hence $V_0$), our model serves as a critical resource scheduler. During GRPO training, $V_0$ predicts success rates prior to rollout, allowing for efficient sampling budget allocation; during deployment, it functions as a router, dispatching instructions to the most cost-effective and suitable model. Empirical results demonstrate that $V_0$ significantly outperforms heuristic budget allocation and achieves a Pareto-optimal trade-off between performance and cost in LLM routing tasks.
Abstract:Multimodal Large Language Models (MLLMs) achieve strong performance through instruction tuning, but real-world deployment requires them to continually expand their capabilities, making Multimodal Continual Instruction Tuning (MCIT) essential. Recent methods leverage sparse expert routing to promote task specialization, but we find that the expert routing process suffers from drift as the data distribution evolves. For example, a grounding query that previously activated localization experts may instead be routed to irrelevant experts after learning OCR tasks. Meanwhile, the grounding-related experts can be overwritten by new tasks and lose their original functionality. Such failure reflects two problems: router drift, where expert selection becomes inconsistent over time, and expert drift, where shared experts are overwritten across tasks. Therefore, we propose StAbilized Mixture-of-Experts (SAME) for MCIT. To address router drift, SAME stabilizes expert selection by decomposing routing dynamics into orthogonal subspaces and updating only task-relevant directions. To mitigate expert drift, we regulate expert updates via curvature-aware scaling using historical input covariance in a rehearsal-free manner. SAME also introduces adaptive expert activation to freeze selected experts during training, reducing redundant computation and cross-task interference. Extensive experiments demonstrate its SOTA performance.




Abstract:Class-Incremental Learning (CIL) aims to continually learn new categories without forgetting previously acquired knowledge. Vision-language models such as CLIP offer strong transferable representations via multi-modal supervision, making them promising for CIL. However, applying CLIP to CIL poses two major challenges: (1) adapting to downstream tasks often requires additional learnable modules, increasing model complexity and susceptibility to forgetting; and (2) while multi-modal representations offer complementary strengths, existing methods have yet to fully realize their potential in effectively integrating visual and textual modalities. To address these issues, we propose BOFA (Bridge-layer Orthogonal Fusion for Adaptation), a novel framework for CIL. BOFA confines all model adaptation exclusively to CLIP's existing cross-modal bridge-layer, thereby adding no extra parameters or inference cost. To prevent forgetting within this layer, it leverages Orthogonal Low-Rank Fusion, a mechanism that constrains parameter updates to a low-rank ``safe subspace" mathematically constructed to be orthogonal to past task features. This ensures stable knowledge accumulation without data replay. Furthermore, BOFA employs a cross-modal hybrid prototype that synergizes stable textual prototypes with visual counterparts derived from our stably adapted bridge-layer, enhancing classification performance. Extensive experiments on standard benchmarks show that BOFA achieves superior accuracy and efficiency compared to existing methods.
Abstract:Adapting pre-trained video generation models into controllable world models via latent actions is a promising step towards creating generalist world models. The dominant paradigm adopts a two-stage approach that trains latent action model (LAM) and the world model separately, resulting in redundant training and limiting their potential for co-adaptation. A conceptually simple and appealing idea is to directly replace the forward dynamic model in LAM with a powerful world model and training them jointly, but it is non-trivial and prone to representational collapse. In this work, we propose CoLA-World, which for the first time successfully realizes this synergistic paradigm, resolving the core challenge in joint learning through a critical warm-up phase that effectively aligns the representations of the from-scratch LAM with the pre-trained world model. This unlocks a co-evolution cycle: the world model acts as a knowledgeable tutor, providing gradients to shape a high-quality LAM, while the LAM offers a more precise and adaptable control interface to the world model. Empirically, CoLA-World matches or outperforms prior two-stage methods in both video simulation quality and downstream visual planning, establishing a robust and efficient new paradigm for the field.




Abstract:Autoregressive (AR) image generation models are capable of producing high-fidelity images but often suffer from slow inference due to their inherently sequential, token-by-token decoding process. Speculative decoding, which employs a lightweight draft model to approximate the output of a larger AR model, has shown promise in accelerating text generation without compromising quality. However, its application to image generation remains largely underexplored. The challenges stem from a significantly larger sampling space, which complicates the alignment between the draft and target model outputs, coupled with the inadequate use of the two-dimensional spatial structure inherent in images, thereby limiting the modeling of local dependencies. To overcome these challenges, we introduce Hawk, a new approach that harnesses the spatial structure of images to guide the speculative model toward more accurate and efficient predictions. Experimental results on multiple text-to-image benchmarks demonstrate a 1.71x speedup over standard AR models, while preserving both image fidelity and diversity.
Abstract:Class-Incremental Learning (CIL) aims to endow models with the ability to continuously adapt to evolving data streams. Recent advances in pre-trained vision-language models (e.g., CLIP) provide a powerful foundation for this task. However, existing approaches often rely on simplistic templates, such as "a photo of a [CLASS]", which overlook the hierarchical nature of visual concepts. For example, recognizing "cat" versus "car" depends on coarse-grained cues, while distinguishing "cat" from "lion" requires fine-grained details. Similarly, the current feature mapping in CLIP relies solely on the representation from the last layer, neglecting the hierarchical information contained in earlier layers. In this work, we introduce HiErarchical Representation MAtchiNg (HERMAN) for CLIP-based CIL. Our approach leverages LLMs to recursively generate discriminative textual descriptors, thereby augmenting the semantic space with explicit hierarchical cues. These descriptors are matched to different levels of the semantic hierarchy and adaptively routed based on task-specific requirements, enabling precise discrimination while alleviating catastrophic forgetting in incremental tasks. Extensive experiments on multiple benchmarks demonstrate that our method consistently achieves state-of-the-art performance.
Abstract:The proliferation of Time Series Foundation Models (TSFMs) has significantly advanced zero-shot forecasting, enabling predictions for unseen time series without task-specific fine-tuning. Extensive research has confirmed that no single TSFM excels universally, as different models exhibit preferences for distinct temporal patterns. This diversity suggests an opportunity: how to take advantage of the complementary abilities of TSFMs. To this end, we propose ZooCast, which characterizes each model's distinct forecasting strengths. ZooCast can intelligently assemble current TSFMs into a model zoo that dynamically selects optimal models for different forecasting tasks. Our key innovation lies in the One-Embedding-Fits-All paradigm that constructs a unified representation space where each model in the zoo is represented by a single embedding, enabling efficient similarity matching for all tasks. Experiments demonstrate ZooCast's strong performance on the GIFT-Eval zero-shot forecasting benchmark while maintaining the efficiency of a single TSFM. In real-world scenarios with sequential model releases, the framework seamlessly adds new models for progressive accuracy gains with negligible overhead.
Abstract:Domain-Incremental Learning (DIL) focuses on continual learning in non-stationary environments, requiring models to adjust to evolving domains while preserving historical knowledge. DIL faces two critical challenges in the context of imbalanced data: intra-domain class imbalance and cross-domain class distribution shifts. These challenges significantly hinder model performance, as intra-domain imbalance leads to underfitting of few-shot classes, while cross-domain shifts require maintaining well-learned many-shot classes and transferring knowledge to improve few-shot class performance in old domains. To overcome these challenges, we introduce the Dual-Balance Collaborative Experts (DCE) framework. DCE employs a frequency-aware expert group, where each expert is guided by specialized loss functions to learn features for specific frequency groups, effectively addressing intra-domain class imbalance. Subsequently, a dynamic expert selector is learned by synthesizing pseudo-features through balanced Gaussian sampling from historical class statistics. This mechanism navigates the trade-off between preserving many-shot knowledge of previous domains and leveraging new data to improve few-shot class performance in earlier tasks. Extensive experimental results on four benchmark datasets demonstrate DCE's state-of-the-art performance.
Abstract:In reinforcement learning (RL), agents continually interact with the environment and use the feedback to refine their behavior. To guide policy optimization, reward models are introduced as proxies of the desired objectives, such that when the agent maximizes the accumulated reward, it also fulfills the task designer's intentions. Recently, significant attention from both academic and industrial researchers has focused on developing reward models that not only align closely with the true objectives but also facilitate policy optimization. In this survey, we provide a comprehensive review of reward modeling techniques within the deep RL literature. We begin by outlining the background and preliminaries in reward modeling. Next, we present an overview of recent reward modeling approaches, categorizing them based on the source, the mechanism, and the learning paradigm. Building on this understanding, we discuss various applications of these reward modeling techniques and review methods for evaluating reward models. Finally, we conclude by highlighting promising research directions in reward modeling. Altogether, this survey includes both established and emerging methods, filling the vacancy of a systematic review of reward models in current literature.




Abstract:Chain-of-Thought (CoT) reasoning has significantly advanced Large Language Models (LLMs) in solving complex tasks. However, its autoregressive paradigm leads to significant computational overhead, hindering its deployment in latency-sensitive applications. To address this, we propose \textbf{DART} (\textbf{D}istilling \textbf{A}utoregressive \textbf{R}easoning to Silent \textbf{T}hought), a self-distillation framework that enables LLMs to replace autoregressive CoT with non-autoregressive Silent Thought (ST). Specifically, DART introduces two training pathways: the CoT pathway for traditional reasoning and the ST pathway for generating answers directly from a few ST tokens. The ST pathway utilizes a lightweight Reasoning Evolvement Module (REM) to align its hidden states with the CoT pathway, enabling the ST tokens to evolve into informative embeddings. During inference, only the ST pathway is activated, leveraging evolving ST tokens to deliver the answer directly. Extensive experimental results demonstrate that DART achieves comparable reasoning performance to existing baselines while offering significant efficiency gains, serving as a feasible alternative for efficient reasoning.