Abstract:Class-Incremental Learning (CIL) requires models to continually acquire knowledge of new classes without forgetting old ones. Despite Pre-trained Models (PTMs) have shown excellent performance in CIL, catastrophic forgetting still occurs as the model learns new concepts. Existing work seeks to utilize lightweight components to adjust the PTM, while the forgetting phenomenon still comes from {\em parameter and retrieval} levels. Specifically, iterative updates of the model result in parameter drift, while mistakenly retrieving irrelevant modules leads to the mismatch during inference. To this end, we propose MOdel Surgery (MOS) to rescue the model from forgetting previous knowledge. By training task-specific adapters, we continually adjust the PTM to downstream tasks. To mitigate parameter-level forgetting, we present an adapter merging approach to learn task-specific adapters, which aims to bridge the gap between different components while reserve task-specific information. Besides, to address retrieval-level forgetting, we introduce a training-free self-refined adapter retrieval mechanism during inference, which leverages the model's inherent ability for better adapter retrieval. By jointly rectifying the model with those steps, MOS can robustly resist catastrophic forgetting in the learning process. Extensive experiments on seven benchmark datasets validate MOS's state-of-the-art performance. Code is available at: https://github.com/sun-hailong/AAAI25-MOS
Abstract:The rapid advancements in Large Language Models (LLMs) have significantly expanded their applications, ranging from multilingual support to domain-specific tasks and multimodal integration. In this paper, we present OmniEvalKit, a novel benchmarking toolbox designed to evaluate LLMs and their omni-extensions across multilingual, multidomain, and multimodal capabilities. Unlike existing benchmarks that often focus on a single aspect, OmniEvalKit provides a modular, lightweight, and automated evaluation system. It is structured with a modular architecture comprising a Static Builder and Dynamic Data Flow, promoting the seamless integration of new models and datasets. OmniEvalKit supports over 100 LLMs and 50 evaluation datasets, covering comprehensive evaluations across thousands of model-dataset combinations. OmniEvalKit is dedicated to creating an ultra-lightweight and fast-deployable evaluation framework, making downstream applications more convenient and versatile for the AI community.
Abstract:Domain-Incremental Learning (DIL) involves the progressive adaptation of a model to new concepts across different domains. While recent advances in pre-trained models provide a solid foundation for DIL, learning new concepts often results in the catastrophic forgetting of pre-trained knowledge. Specifically, sequential model updates can overwrite both the representation and the classifier with knowledge from the latest domain. Thus, it is crucial to develop a representation and corresponding classifier that accommodate all seen domains throughout the learning process. To this end, we propose DUal ConsolidaTion (Duct) to unify and consolidate historical knowledge at both the representation and classifier levels. By merging the backbone of different stages, we create a representation space suitable for multiple domains incrementally. The merged representation serves as a balanced intermediary that captures task-specific features from all seen domains. Additionally, to address the mismatch between consolidated embeddings and the classifier, we introduce an extra classifier consolidation process. Leveraging class-wise semantic information, we estimate the classifier weights of old domains within the latest embedding space. By merging historical and estimated classifiers, we align them with the consolidated embedding space, facilitating incremental classification. Extensive experimental results on four benchmark datasets demonstrate Duct's state-of-the-art performance.
Abstract:In our ever-evolving world, new data exhibits a long-tailed distribution, such as e-commerce platform reviews. This necessitates continuous model learning imbalanced data without forgetting, addressing the challenge of long-tailed class-incremental learning (LTCIL). Existing methods often rely on retraining linear classifiers with former data, which is impractical in real-world settings. In this paper, we harness the potent representation capabilities of pre-trained models and introduce AdaPtive Adapter RouTing (APART) as an exemplar-free solution for LTCIL. To counteract forgetting, we train inserted adapters with frozen pre-trained weights for deeper adaptation and maintain a pool of adapters for selection during sequential model updates. Additionally, we present an auxiliary adapter pool designed for effective generalization, especially on minority classes. Adaptive instance routing across these pools captures crucial correlations, facilitating a comprehensive representation of all classes. Consequently, APART tackles the imbalance problem as well as catastrophic forgetting in a unified framework. Extensive benchmark experiments validate the effectiveness of APART. Code is available at: https://github.com/vita-qzh/APART
Abstract:Merging models becomes a fundamental procedure in some applications that consider model efficiency and robustness. The training randomness or Non-I.I.D. data poses a huge challenge for averaging-based model fusion. Previous research efforts focus on element-wise regularization or neural permutations to enhance model averaging while overlooking weight scope variations among models, which can significantly affect merging effectiveness. In this paper, we reveal variations in weight scope under different training conditions, shedding light on its influence on model merging. Fortunately, the parameters in each layer basically follow the Gaussian distribution, which inspires a novel and simple regularization approach named Weight Scope Alignment (WSA). It contains two key components: 1) leveraging a target weight scope to guide the model training process for ensuring weight scope matching in the subsequent model merging. 2) fusing the weight scope of two or more models into a unified one for multi-stage model fusion. We extend the WSA regularization to two different scenarios, including Mode Connectivity and Federated Learning. Abundant experimental studies validate the effectiveness of our approach.
Abstract:Automated sperm morphology analysis plays a crucial role in the assessment of male fertility, yet its efficacy is often compromised by the challenges in accurately segmenting sperm images. Existing segmentation techniques, including the Segment Anything Model(SAM), are notably inadequate in addressing the complex issue of sperm overlap-a frequent occurrence in clinical samples. Our exploratory studies reveal that modifying image characteristics by removing sperm heads and easily segmentable areas, alongside enhancing the visibility of overlapping regions, markedly enhances SAM's efficiency in segmenting intricate sperm structures. Motivated by these findings, we present the Cascade SAM for Sperm Segmentation (CS3), an unsupervised approach specifically designed to tackle the issue of sperm overlap. This method employs a cascade application of SAM to segment sperm heads, simple tails, and complex tails in stages. Subsequently, these segmented masks are meticulously matched and joined to construct complete sperm masks. In collaboration with leading medical institutions, we have compiled a dataset comprising approximately 2,000 unlabeled sperm images to fine-tune our method, and secured expert annotations for an additional 240 images to facilitate comprehensive model assessment. Experimental results demonstrate superior performance of CS3 compared to existing methods.
Abstract:The growing success of deep learning in various domains has prompted investigations into its application to tabular data, where deep models have shown promising results compared to traditional tree-based methods. In this paper, we revisit Neighborhood Component Analysis (NCA), a classic tabular prediction method introduced in 2004, designed to learn a linear projection that captures semantic similarities between instances. We find that minor modifications, such as adjustments to the learning objectives and the integration of deep learning architectures, significantly enhance NCA's performance, enabling it to surpass most modern deep tabular models. Additionally, we introduce a stochastic neighbor sampling strategy that improves both the efficiency and predictive accuracy of our proposed ModernNCA -- sampling only a subset of neighbors during training, while utilizing the entire neighborhood during inference. Extensive experiments demonstrate that our ModernNCA achieves state-of-the-art results in both classification and regression tasks across various tabular datasets, outperforming both tree-based and other deep tabular models, while also reducing training time and model size.
Abstract:Tabular data is prevalent across various domains in machine learning. Although Deep Neural Network (DNN)-based methods have shown promising performance comparable to tree-based ones, in-depth evaluation of these methods is challenging due to varying performance ranks across diverse datasets. In this paper, we propose a comprehensive benchmark comprising 300 tabular datasets, covering a wide range of task types, size distributions, and domains. We perform an extensive comparison between state-of-the-art deep tabular methods and tree-based methods, revealing the average rank of all methods and highlighting the key factors that influence the success of deep tabular methods. Next, we analyze deep tabular methods based on their training dynamics, including changes in validation metrics and other statistics. For each dataset-method pair, we learn a mapping from both the meta-features of datasets and the first part of the validation curve to the final validation set performance and even the evolution of validation curves. This mapping extracts essential meta-features that influence prediction accuracy, helping the analysis of tabular methods from novel aspects. Based on the performance of all methods on this large benchmark, we identify two subsets of 45 datasets each. The first subset contains datasets that favor either tree-based methods or DNN-based methods, serving as effective analysis tools to evaluate strategies (e.g., attribute encoding strategies) for improving deep tabular models. The second subset contains datasets where the ranks of methods are consistent with the overall benchmark, acting as a probe for tabular analysis. These ``tiny tabular benchmarks'' will facilitate further studies on tabular data.
Abstract:Model-based offline reinforcement Learning (RL) is a promising approach that leverages existing data effectively in many real-world applications, especially those involving high-dimensional inputs like images and videos. To alleviate the distribution shift issue in offline RL, existing model-based methods heavily rely on the uncertainty of learned dynamics. However, the model uncertainty estimation becomes significantly biased when observations contain complex distractors with non-trivial dynamics. To address this challenge, we propose a new approach - \emph{Separated Model-based Offline Policy Optimization} (SeMOPO) - decomposing latent states into endogenous and exogenous parts via conservative sampling and estimating model uncertainty on the endogenous states only. We provide a theoretical guarantee of model uncertainty and performance bound of SeMOPO. To assess the efficacy, we construct the Low-Quality Vision Deep Data-Driven Datasets for RL (LQV-D4RL), where the data are collected by non-expert policy and the observations include moving distractors. Experimental results show that our method substantially outperforms all baseline methods, and further analytical experiments validate the critical designs in our method. The project website is \href{https://sites.google.com/view/semopo}{https://sites.google.com/view/semopo}.
Abstract:Characterizing users and items through vector representations is crucial for various tasks in recommender systems. Recent approaches attempt to apply Large Language Models (LLMs) in recommendation through a question and answer format, where real users and items (e.g., Item No.2024) are represented with in-vocabulary tokens (e.g., "item", "20", "24"). However, since LLMs are typically pretrained on natural language tasks, these in-vocabulary tokens lack the expressive power for distinctive users and items, thereby weakening the recommendation ability even after fine-tuning on recommendation tasks. In this paper, we explore how to effectively tokenize users and items in LLM-based recommender systems. We emphasize the role of out-of-vocabulary (OOV) tokens in addition to the in-vocabulary ones and claim the memorization of OOV tokens that capture correlations of users/items as well as diversity of OOV tokens. By clustering the learned representations from historical user-item interactions, we make the representations of user/item combinations share the same OOV tokens if they have similar properties. Furthermore, integrating these OOV tokens into the LLM's vocabulary allows for better distinction between users and items and enhanced capture of user-item relationships during fine-tuning on downstream tasks. Our proposed framework outperforms existing state-of-the-art methods across various downstream recommendation tasks.