Abstract:The astonishing successes of ML have raised growing concern for the fairness of modern methods when deployed in real world settings. However, studies on fairness have mostly focused on supervised ML, while unsupervised outlier detection (OD), with numerous applications in finance, security, etc., have attracted little attention. While a few studies proposed fairness-enhanced OD algorithms, they remain agnostic to the underlying driving mechanisms or sources of unfairness. Even within the supervised ML literature, there exists debate on whether unfairness stems solely from algorithmic biases (i.e. design choices) or from the biases encoded in the data on which they are trained. To close this gap, this work aims to shed light on the possible sources of unfairness in OD by auditing detection models under different data-centric factors. By injecting various known biases into the input data -- as pertain to sample size disparity, under-representation, feature measurement noise, and group membership obfuscation -- we find that the OD algorithms under the study all exhibit fairness pitfalls, although differing in which types of data bias they are more susceptible to. Most notable of our study is to demonstrate that OD algorithm bias is not merely a data bias problem. A key realization is that the data properties that emerge from bias injection could as well be organic -- as pertain to natural group differences w.r.t. sparsity, base rate, variance, and multi-modality. Either natural or biased, such data properties can give rise to unfairness as they interact with certain algorithmic design choices.
Abstract:The approximate nearest neighbor search (ANNS) is a fundamental and essential component in information retrieval, with graph-based methodologies demonstrating superior performance compared to alternative approaches. Extensive research efforts have been dedicated to improving search efficiency by developing various graph-based indices, such as HNSW (Hierarchical Navigable Small World). However, the performance of HNSW and most graph-based indices becomes unacceptable when faced with a large number of real-time deletions, insertions, and updates. Furthermore, during update operations, HNSW can result in some data points becoming unreachable, a situation we refer to as the `unreachable points phenomenon'. This phenomenon could significantly affect the search accuracy of the graph in certain situations. To address these issues, we present efficient measures to overcome the shortcomings of HNSW, specifically addressing poor performance over long periods of delete and update operations and resolving the issues caused by the unreachable points phenomenon. Our proposed MN-RU algorithm effectively improves update efficiency and suppresses the growth rate of unreachable points, ensuring better overall performance and maintaining the integrity of the graph. Our results demonstrate that our methods outperform existing approaches. Furthermore, since our methods are based on HNSW, they can be easily integrated with existing indices widely used in the industrial field, making them practical for future real-world applications. Code is available at https://github.com/xwt1/ICPADS-MN-RU.git
Abstract:Small Unmanned Aerial Vehicles (UAVs) are becoming potential threats to security-sensitive areas and personal privacy. A UAV can shoot photos at height, but how to detect such an uninvited intruder is an open problem. This paper presents mmHawkeye, a passive approach for UAV detection with a COTS millimeter wave (mmWave) radar. mmHawkeye doesn't require prior knowledge of the type, motions, and flight trajectory of the UAV, while exploiting the signal feature induced by the UAV's periodic micro-motion (PMM) for long-range accurate detection. The design is therefore effective in dealing with low-SNR and uncertain reflected signals from the UAV. mmHawkeye can further track the UAV's position with dynamic programming and particle filtering, and identify it with a Long Short-Term Memory (LSTM) based detector. We implement mmHawkeye on a commercial mmWave radar and evaluate its performance under varied settings. The experimental results show that mmHawkeye has a detection accuracy of 95.8% and can realize detection at a range up to 80m.