Abstract:Nowadays, large language models (LLMs) have been integrated with conventional recommendation models to improve recommendation performance. However, while most of the existing works have focused on improving the model performance, the privacy issue has only received comparatively less attention. In this paper, we review recent advancements in privacy within LLM-based recommendation, categorizing them into privacy attacks and protection mechanisms. Additionally, we highlight several challenges and propose future directions for the community to address these critical problems.
Abstract:We present CNER-UAV, a fine-grained \textbf{C}hinese \textbf{N}ame \textbf{E}ntity \textbf{R}ecognition dataset specifically designed for the task of address resolution in \textbf{U}nmanned \textbf{A}erial \textbf{V}ehicle delivery systems. The dataset encompasses a diverse range of five categories, enabling comprehensive training and evaluation of NER models. To construct this dataset, we sourced the data from a real-world UAV delivery system and conducted a rigorous data cleaning and desensitization process to ensure privacy and data integrity. The resulting dataset, consisting of around 12,000 annotated samples, underwent human experts and \textbf{L}arge \textbf{L}anguage \textbf{M}odel annotation. We evaluated classical NER models on our dataset and provided in-depth analysis. The dataset and models are publicly available at \url{https://github.com/zhhvvv/CNER-UAV}.
Abstract:One challenge for evaluating current sequence- or dialogue-level chatbots, such as Empathetic Open-domain Conversation Models, is to determine whether the chatbot performs in an emotionally consistent way. The most recent work only evaluates on the aspects of context coherence, language fluency, response diversity, or logical self-consistency between dialogues. This work proposes training an evaluator to determine the emotional consistency of chatbots.