Abstract:Recognizing human actions from point cloud sequence has attracted tremendous attention from both academia and industry due to its wide applications. However, most previous studies on point cloud action recognition typically require complex networks to extract intra-frame spatial features and inter-frame temporal features, resulting in an excessive number of redundant computations. This leads to high latency, rendering them impractical for real-world applications. To address this problem, we propose a Plane-Fit Redundancy Encoding point cloud sequence network named PRENet. The primary concept of our approach involves the utilization of plane fitting to mitigate spatial redundancy within the sequence, concurrently encoding the temporal redundancy of the entire sequence to minimize redundant computations. Specifically, our network comprises two principal modules: a Plane-Fit Embedding module and a Spatio-Temporal Consistency Encoding module. The Plane-Fit Embedding module capitalizes on the observation that successive point cloud frames exhibit unique geometric features in physical space, allowing for the reuse of spatially encoded data for temporal stream encoding. The Spatio-Temporal Consistency Encoding module amalgamates the temporal structure of the temporally redundant part with its corresponding spatial arrangement, thereby enhancing recognition accuracy. We have done numerous experiments to verify the effectiveness of our network. The experimental results demonstrate that our method achieves almost identical recognition accuracy while being nearly four times faster than other state-of-the-art methods.
Abstract:Deploying neural networks on microcontroller units (MCUs) presents substantial challenges due to their constrained computation and memory resources. Previous researches have explored patch-based inference as a strategy to conserve memory without sacrificing model accuracy. However, this technique suffers from severe redundant computation overhead, leading to a substantial increase in execution latency. A feasible solution to address this issue is mixed-precision quantization, but it faces the challenges of accuracy degradation and a time-consuming search time. In this paper, we propose QuantMCU, a novel patch-based inference method that utilizes value-driven mixed-precision quantization to reduce redundant computation. We first utilize value-driven patch classification (VDPC) to maintain the model accuracy. VDPC classifies patches into two classes based on whether they contain outlier values. For patches containing outlier values, we apply 8-bit quantization to the feature maps on the dataflow branches that follow. In addition, for patches without outlier values, we utilize value-driven quantization search (VDQS) on the feature maps of their following dataflow branches to reduce search time. Specifically, VDQS introduces a novel quantization search metric that takes into account both computation and accuracy, and it employs entropy as an accuracy representation to avoid additional training. VDQS also adopts an iterative approach to determine the bitwidth of each feature map to further accelerate the search process. Experimental results on real-world MCU devices show that QuantMCU can reduce computation by 2.2x on average while maintaining comparable model accuracy compared to the state-of-the-art patch-based inference methods.
Abstract:Detecting out-of-distribution (OOD) examples is crucial to guarantee the reliability and safety of deep neural networks in real-world settings. In this paper, we offer an innovative perspective on quantifying the disparities between in-distribution (ID) and OOD data -- analyzing the uncertainty that arises when models attempt to explain their predictive decisions. This perspective is motivated by our observation that gradient-based attribution methods encounter challenges in assigning feature importance to OOD data, thereby yielding divergent explanation patterns. Consequently, we investigate how attribution gradients lead to uncertain explanation outcomes and introduce two forms of abnormalities for OOD detection: the zero-deflation abnormality and the channel-wise average abnormality. We then propose GAIA, a simple and effective approach that incorporates Gradient Abnormality Inspection and Aggregation. The effectiveness of GAIA is validated on both commonly utilized (CIFAR) and large-scale (ImageNet-1k) benchmarks. Specifically, GAIA reduces the average FPR95 by 23.10% on CIFAR10 and by 45.41% on CIFAR100 compared to advanced post-hoc methods.
Abstract:Real-time video analytics on edge devices for changing scenes remains a difficult task. As edge devices are usually resource-constrained, edge deep neural networks (DNNs) have fewer weights and shallower architectures than general DNNs. As a result, they only perform well in limited scenarios and are sensitive to data drift. In this paper, we introduce EdgeMA, a practical and efficient video analytics system designed to adapt models to shifts in real-world video streams over time, addressing the data drift problem. EdgeMA extracts the gray level co-occurrence matrix based statistical texture feature and uses the Random Forest classifier to detect the domain shift. Moreover, we have incorporated a method of model adaptation based on importance weighting, specifically designed to update models to cope with the label distribution shift. Through rigorous evaluation of EdgeMA on a real-world dataset, our results illustrate that EdgeMA significantly improves inference accuracy.
Abstract:This paper proposes Shoggoth, an efficient edge-cloud collaborative architecture, for boosting inference performance on real-time video of changing scenes. Shoggoth uses online knowledge distillation to improve the accuracy of models suffering from data drift and offloads the labeling process to the cloud, alleviating constrained resources of edge devices. At the edge, we design adaptive training using small batches to adapt models under limited computing power, and adaptive sampling of training frames for robustness and reducing bandwidth. The evaluations on the realistic dataset show 15%-20% model accuracy improvement compared to the edge-only strategy and fewer network costs than the cloud-only strategy.
Abstract:Out-of-distribution (OOD) detection aims at enhancing standard deep neural networks to distinguish anomalous inputs from original training data. Previous progress has introduced various approaches where the in-distribution training data and even several OOD examples are prerequisites. However, due to privacy and security, auxiliary data tends to be impractical in a real-world scenario. In this paper, we propose a data-free method without training on natural data, called Class-Conditional Impressions Reappearing (C2IR), which utilizes image impressions from the fixed model to recover class-conditional feature statistics. Based on that, we introduce Integral Probability Metrics to estimate layer-wise class-conditional deviations and obtain layer weights by Measuring Gradient-based Importance (MGI). The experiments verify the effectiveness of our method and indicate that C2IR outperforms other post-hoc methods and reaches comparable performance to the full access (ID and OOD) detection method, especially in the far-OOD dataset (SVHN).