Zhejiang University
Abstract:Recent studies have revealed the vulnerability of Deep Neural Network (DNN) models to backdoor attacks. However, existing backdoor attacks arbitrarily set the trigger mask or use a randomly selected trigger, which restricts the effectiveness and robustness of the generated backdoor triggers. In this paper, we propose a novel attention-based mask generation methodology that searches for the optimal trigger shape and location. We also introduce a Quality-of-Experience (QoE) term into the loss function and carefully adjust the transparency value of the trigger in order to make the backdoored samples to be more natural. To further improve the prediction accuracy of the victim model, we propose an alternating retraining algorithm in the backdoor injection process. The victim model is retrained with mixed poisoned datasets in even iterations and with only benign samples in odd iterations. Besides, we launch the backdoor attack under a co-optimized attack framework that alternately optimizes the backdoor trigger and backdoored model to further improve the attack performance. Apart from DNN models, we also extend our proposed attack method against vision transformers. We evaluate our proposed method with extensive experiments on VGG-Flower, CIFAR-10, GTSRB, CIFAR-100, and ImageNette datasets. It is shown that we can increase the attack success rate by as much as 82\% over baselines when the poison ratio is low and achieve a high QoE of the backdoored samples. Our proposed backdoor attack framework also showcases robustness against state-of-the-art backdoor defenses.
Abstract:Vision transformers have achieved impressive performance in various vision-related tasks, but their vulnerability to backdoor attacks is under-explored. A handful of existing works focus on dirty-label attacks with wrongly-labeled poisoned training samples, which may fail if a benign model trainer corrects the labels. In this paper, we propose Megatron, an evasive clean-label backdoor attack against vision transformers, where the attacker injects the backdoor without manipulating the data-labeling process. To generate an effective trigger, we customize two loss terms based on the attention mechanism used in transformer networks, i.e., latent loss and attention diffusion loss. The latent loss aligns the last attention layer between triggered samples and clean samples of the target label. The attention diffusion loss emphasizes the attention diffusion area that encompasses the trigger. A theoretical analysis is provided to underpin the rationale behind the attention diffusion loss. Extensive experiments on CIFAR-10, GTSRB, CIFAR-100, and Tiny ImageNet demonstrate the effectiveness of Megatron. Megatron can achieve attack success rates of over 90% even when the position of the trigger is slightly shifted during testing. Furthermore, Megatron achieves better evasiveness than baselines regarding both human visual inspection and defense strategies (i.e., DBAVT, BAVT, Beatrix, TeCo, and SAGE).
Abstract:Given the societal impact of unsafe content generated by large language models (LLMs), ensuring that LLM services comply with safety standards is a crucial concern for LLM service providers. Common content moderation methods are limited by an effectiveness-and-efficiency dilemma, where simple models are fragile while sophisticated models consume excessive computational resources. In this paper, we reveal for the first time that effective and efficient content moderation can be achieved by extracting conceptual features from chat-oriented LLMs, despite their initial fine-tuning for conversation rather than content moderation. We propose a practical and unified content moderation framework for LLM services, named Legilimens, which features both effectiveness and efficiency. Our red-team model-based data augmentation enhances the robustness of Legilimens against state-of-the-art jailbreaking. Additionally, we develop a framework to theoretically analyze the cost-effectiveness of Legilimens compared to other methods. We have conducted extensive experiments on five host LLMs, seventeen datasets, and nine jailbreaking methods to verify the effectiveness, efficiency, and robustness of Legilimens against normal and adaptive adversaries. A comparison of Legilimens with both commercial and academic baselines demonstrates the superior performance of Legilimens. Furthermore, we confirm that Legilimens can be applied to few-shot scenarios and extended to multi-label classification tasks.
Abstract:Malicious shell commands are linchpins to many cyber-attacks, but may not be easy to understand by security analysts due to complicated and often disguised code structures. Advances in large language models (LLMs) have unlocked the possibility of generating understandable explanations for shell commands. However, existing general-purpose LLMs suffer from a lack of expert knowledge and a tendency to hallucinate in the task of shell command explanation. In this paper, we present Raconteur, a knowledgeable, expressive and portable shell command explainer powered by LLM. Raconteur is infused with professional knowledge to provide comprehensive explanations on shell commands, including not only what the command does (i.e., behavior) but also why the command does it (i.e., purpose). To shed light on the high-level intent of the command, we also translate the natural-language-based explanation into standard technique & tactic defined by MITRE ATT&CK, the worldwide knowledge base of cybersecurity. To enable Raconteur to explain unseen private commands, we further develop a documentation retriever to obtain relevant information from complementary documentations to assist the explanation process. We have created a large-scale dataset for training and conducted extensive experiments to evaluate the capability of Raconteur in shell command explanation. The experiments verify that Raconteur is able to provide high-quality explanations and in-depth insight of the intent of the command.
Abstract:Instead of building deep learning models from scratch, developers are more and more relying on adapting pre-trained models to their customized tasks. However, powerful pre-trained models may be misused for unethical or illegal tasks, e.g., privacy inference and unsafe content generation. In this paper, we introduce a pioneering learning paradigm, non-fine-tunable learning, which prevents the pre-trained model from being fine-tuned to indecent tasks while preserving its performance on the original task. To fulfill this goal, we propose SOPHON, a protection framework that reinforces a given pre-trained model to be resistant to being fine-tuned in pre-defined restricted domains. Nonetheless, this is challenging due to a diversity of complicated fine-tuning strategies that may be adopted by adversaries. Inspired by model-agnostic meta-learning, we overcome this difficulty by designing sophisticated fine-tuning simulation and fine-tuning evaluation algorithms. In addition, we carefully design the optimization process to entrap the pre-trained model within a hard-to-escape local optimum regarding restricted domains. We have conducted extensive experiments on two deep learning modes (classification and generation), seven restricted domains, and six model architectures to verify the effectiveness of SOPHON. Experiment results verify that fine-tuning SOPHON-protected models incurs an overhead comparable to or even greater than training from scratch. Furthermore, we confirm the robustness of SOPHON to three fine-tuning methods, five optimizers, various learning rates and batch sizes. SOPHON may help boost further investigations into safe and responsible AI.
Abstract:Text-to-image (T2I) models, such as Stable Diffusion, have exhibited remarkable performance in generating high-quality images from text descriptions in recent years. However, text-to-image models may be tricked into generating not-safe-for-work (NSFW) content, particularly in sexual scenarios. Existing countermeasures mostly focus on filtering inappropriate inputs and outputs, or suppressing improper text embeddings, which can block explicit NSFW-related content (e.g., naked or sexy) but may still be vulnerable to adversarial prompts inputs that appear innocent but are ill-intended. In this paper, we present SafeGen, a framework to mitigate unsafe content generation by text-to-image models in a text-agnostic manner. The key idea is to eliminate unsafe visual representations from the model regardless of the text input. In this way, the text-to-image model is resistant to adversarial prompts since unsafe visual representations are obstructed from within. Extensive experiments conducted on four datasets demonstrate SafeGen's effectiveness in mitigating unsafe content generation while preserving the high-fidelity of benign images. SafeGen outperforms eight state-of-the-art baseline methods and achieves 99.1% sexual content removal performance. Furthermore, our constructed benchmark of adversarial prompts provides a basis for future development and evaluation of anti-NSFW-generation methods.
Abstract:Voice conversion (VC) techniques can be abused by malicious parties to transform their audios to sound like a target speaker, making it hard for a human being or a speaker verification/identification system to trace the source speaker. In this paper, we make the first attempt to restore the source voiceprint from audios synthesized by voice conversion methods with high credit. However, unveiling the features of the source speaker from a converted audio is challenging since the voice conversion operation intends to disentangle the original features and infuse the features of the target speaker. To fulfill our goal, we develop Revelio, a representation learning model, which learns to effectively extract the voiceprint of the source speaker from converted audio samples. We equip Revelio with a carefully-designed differential rectification algorithm to eliminate the influence of the target speaker by removing the representation component that is parallel to the voiceprint of the target speaker. We have conducted extensive experiments to evaluate the capability of Revelio in restoring voiceprint from audios converted by VQVC, VQVC+, AGAIN, and BNE. The experiments verify that Revelio is able to rebuild voiceprints that can be traced to the source speaker by speaker verification and identification systems. Revelio also exhibits robust performance under inter-gender conversion, unseen languages, and telephony networks.
Abstract:Voice data generated on instant messaging or social media applications contains unique user voiceprints that may be abused by malicious adversaries for identity inference or identity theft. Existing voice anonymization techniques, e.g., signal processing and voice conversion/synthesis, suffer from degradation of perceptual quality. In this paper, we develop a voice anonymization system, named V-Cloak, which attains real-time voice anonymization while preserving the intelligibility, naturalness and timbre of the audio. Our designed anonymizer features a one-shot generative model that modulates the features of the original audio at different frequency levels. We train the anonymizer with a carefully-designed loss function. Apart from the anonymity loss, we further incorporate the intelligibility loss and the psychoacoustics-based naturalness loss. The anonymizer can realize untargeted and targeted anonymization to achieve the anonymity goals of unidentifiability and unlinkability. We have conducted extensive experiments on four datasets, i.e., LibriSpeech (English), AISHELL (Chinese), CommonVoice (French) and CommonVoice (Italian), five Automatic Speaker Verification (ASV) systems (including two DNN-based, two statistical and one commercial ASV), and eleven Automatic Speech Recognition (ASR) systems (for different languages). Experiment results confirm that V-Cloak outperforms five baselines in terms of anonymity performance. We also demonstrate that V-Cloak trained only on the VoxCeleb1 dataset against ECAPA-TDNN ASV and DeepSpeech2 ASR has transferable anonymity against other ASVs and cross-language intelligibility for other ASRs. Furthermore, we verify the robustness of V-Cloak against various de-noising techniques and adaptive attacks. Hopefully, V-Cloak may provide a cloak for us in a prism world.
Abstract:In the area of Internet of Things (IoT) voice assistants have become an important interface to operate smart speakers, smartphones, and even automobiles. To save power and protect user privacy, voice assistants send commands to the cloud only if a small set of pre-registered wake-up words are detected. However, voice assistants are shown to be vulnerable to the FakeWake phenomena, whereby they are inadvertently triggered by innocent-sounding fuzzy words. In this paper, we present a systematic investigation of the FakeWake phenomena from three aspects. To start with, we design the first fuzzy word generator to automatically and efficiently produce fuzzy words instead of searching through a swarm of audio materials. We manage to generate 965 fuzzy words covering 8 most popular English and Chinese smart speakers. To explain the causes underlying the FakeWake phenomena, we construct an interpretable tree-based decision model, which reveals phonetic features that contribute to false acceptance of fuzzy words by wake-up word detectors. Finally, we propose remedies to mitigate the effect of FakeWake. The results show that the strengthened models are not only resilient to fuzzy words but also achieve better overall performance on original training datasets.
Abstract:With large amounts of data collected from massive sensors, mobile users and institutions becomes widely available, neural network based deep learning is becoming increasingly popular and making great success in many application scenarios, such as image detection, speech recognition and machine translation. While deep learning can provide various benefits, the data for training usually contains highly sensitive information, e.g., personal medical records, and a central location for saving the data may pose a considerable threat to user privacy. In this paper, we present a practical privacy-preserving collaborative deep learning system that allows users (i.e., participants) to cooperatively build a collective deep learning model with data of all participants, without direct data sharing and central data storage. In our system, each participant trains a local model with their own data and only shares model parameters with the others. To further avoid potential privacy leakage from sharing model parameters, we use functional mechanism to perturb the objective function of the neural network in the training process to achieve $\epsilon$-differential privacy. In particular, for the first time, we consider the possibility that the data of certain participants may be of low quality (called \textit{irregular participants}), and propose a solution to reduce the impact of these participants while protecting their privacy. We evaluate the performance of our system on two well-known real-world data sets for regression and classification tasks. The results demonstrate that our system is robust to irregular participants, and can achieve high accuracy close to the centralized model while ensuring rigorous privacy protection.