Abstract:In this paper, we present FSOD-VFM: Few-Shot Object Detectors with Vision Foundation Models, a framework that leverages vision foundation models to tackle the challenge of few-shot object detection. FSOD-VFM integrates three key components: a universal proposal network (UPN) for category-agnostic bounding box generation, SAM2 for accurate mask extraction, and DINOv2 features for efficient adaptation to new object categories. Despite the strong generalization capabilities of foundation models, the bounding boxes generated by UPN often suffer from overfragmentation, covering only partial object regions and leading to numerous small, false-positive proposals rather than accurate, complete object detections. To address this issue, we introduce a novel graph-based confidence reweighting method. In our approach, predicted bounding boxes are modeled as nodes in a directed graph, with graph diffusion operations applied to propagate confidence scores across the network. This reweighting process refines the scores of proposals, assigning higher confidence to whole objects and lower confidence to local, fragmented parts. This strategy improves detection granularity and effectively reduces the occurrence of false-positive bounding box proposals. Through extensive experiments on Pascal-5$^i$, COCO-20$^i$, and CD-FSOD datasets, we demonstrate that our method substantially outperforms existing approaches, achieving superior performance without requiring additional training. Notably, on the challenging CD-FSOD dataset, which spans multiple datasets and domains, our FSOD-VFM achieves 31.6 AP in the 10-shot setting, substantially outperforming previous training-free methods that reach only 21.4 AP. Code is available at: https://intellindust-ai-lab.github.io/projects/FSOD-VFM.
Abstract:Image stitching often faces challenges due to varying capture angles, positional differences, and object movements, leading to misalignments and visual discrepancies. Traditional seam carving methods neglect semantic information, causing disruptions in foreground continuity. We introduce SemanticStitch, a deep learning-based framework that incorporates semantic priors of foreground objects to preserve their integrity and enhance visual coherence. Our approach includes a novel loss function that emphasizes the semantic integrity of salient objects, significantly improving stitching quality. We also present two specialized real-world datasets to evaluate our method's effectiveness. Experimental results demonstrate substantial improvements over traditional techniques, providing robust support for practical applications.
Abstract:The malformed hands in the AI-generated images seriously affect the authenticity of the images. To refine malformed hands, existing depth-based approaches use a hand depth estimator to guide the refinement of malformed hands. Due to the performance limitations of the hand depth estimator, many hand details cannot be represented, resulting in errors in the generated hands, such as confusing the palm and the back of the hand. To solve this problem, we propose a 3D mesh-guided refinement framework using a diffusion pipeline. We use a state-of-the-art 3D hand mesh estimator, which provides more details of the hands. For training, we collect and reannotate a dataset consisting of RGB images and 3D hand mesh. Then we design a diffusion inpainting model to generate refined outputs guided by 3D hand meshes. For inference, we propose a double check algorithm to facilitate the 3D hand mesh estimator to obtain robust hand mesh guidance to obtain our refined results. Beyond malformed hand refinement, we propose a novel hand pose transformation method. It increases the flexibility and diversity of the malformed hand refinement task. We made the restored images mimic the hand poses of the reference images. The pose transformation requires no additional training. Extensive experimental results demonstrate the superior performance of our proposed method.
Abstract:In semantic segmentation, accurate prediction masks are crucial for downstream tasks such as medical image analysis and image editing. Due to the lack of annotated data, few-shot semantic segmentation (FSS) performs poorly in predicting masks with precise contours. Recently, we have noticed that the large foundation model segment anything model (SAM) performs well in processing detailed features. Inspired by SAM, we propose FSS-SAM to boost FSS methods by addressing the issue of inaccurate contour. The FSS-SAM is training-free. It works as a post-processing tool for any FSS methods and can improve the accuracy of predicted masks. Specifically, we use predicted masks from FSS methods to generate prompts and then use SAM to predict new masks. To avoid predicting wrong masks with SAM, we propose a prediction result selection (PRS) algorithm. The algorithm can remarkably decrease wrong predictions. Experiment results on public datasets show that our method is superior to base FSS methods in both quantitative and qualitative aspects.