Abstract:Stereo matching has emerged as a cost-effective solution for road surface 3D reconstruction, garnering significant attention towards improving both computational efficiency and accuracy. This article introduces decisive disparity diffusion (D3Stereo), marking the first exploration of dense deep feature matching that adapts pre-trained deep convolutional neural networks (DCNNs) to previously unseen road scenarios. A pyramid of cost volumes is initially created using various levels of learned representations. Subsequently, a novel recursive bilateral filtering algorithm is employed to aggregate these costs. A key innovation of D3Stereo lies in its alternating decisive disparity diffusion strategy, wherein intra-scale diffusion is employed to complete sparse disparity images, while inter-scale inheritance provides valuable prior information for higher resolutions. Extensive experiments conducted on our created UDTIRI-Stereo and Stereo-Road datasets underscore the effectiveness of D3Stereo strategy in adapting pre-trained DCNNs and its superior performance compared to all other explicit programming-based algorithms designed specifically for road surface 3D reconstruction. Additional experiments conducted on the Middlebury dataset with backbone DCNNs pre-trained on the ImageNet database further validate the versatility of D3Stereo strategy in tackling general stereo matching problems.
Abstract:Task-specific data-fusion networks have marked considerable achievements in urban scene parsing. Among these networks, our recently proposed RoadFormer successfully extracts heterogeneous features from RGB images and surface normal maps and fuses these features through attention mechanisms, demonstrating compelling efficacy in RGB-Normal road scene parsing. However, its performance significantly deteriorates when handling other types/sources of data or performing more universal, all-category scene parsing tasks. To overcome these limitations, this study introduces RoadFormer+, an efficient, robust, and adaptable model capable of effectively fusing RGB-X data, where ``X'', represents additional types/modalities of data such as depth, thermal, surface normal, and polarization. Specifically, we propose a novel hybrid feature decoupling encoder to extract heterogeneous features and decouple them into global and local components. These decoupled features are then fused through a dual-branch multi-scale heterogeneous feature fusion block, which employs parallel Transformer attentions and convolutional neural network modules to merge multi-scale features across different scales and receptive fields. The fused features are subsequently fed into a decoder to generate the final semantic predictions. Notably, our proposed RoadFormer+ ranks first on the KITTI Road benchmark and achieves state-of-the-art performance in mean intersection over union on the Cityscapes, MFNet, FMB, and ZJU datasets. Moreover, it reduces the number of learnable parameters by 65\% compared to RoadFormer. Our source code will be publicly available at mias.group/RoadFormerPlus.
Abstract:Semantic segmentation and stereo matching, respectively analogous to the ventral and dorsal streams in our human brain, are two key components of autonomous driving perception systems. Addressing these two tasks with separate networks is no longer the mainstream direction in developing computer vision algorithms, particularly with the recent advances in large vision models and embodied artificial intelligence. The trend is shifting towards combining them within a joint learning framework, especially emphasizing feature sharing between the two tasks. The major contributions of this study lie in comprehensively tightening the coupling between semantic segmentation and stereo matching. Specifically, this study introduces three novelties: (1) a tightly coupled, gated feature fusion strategy, (2) a hierarchical deep supervision strategy, and (3) a coupling tightening loss function. The combined use of these technical contributions results in TiCoSS, a state-of-the-art joint learning framework that simultaneously tackles semantic segmentation and stereo matching. Through extensive experiments on the KITTI and vKITTI2 datasets, along with qualitative and quantitative analyses, we validate the effectiveness of our developed strategies and loss function, and demonstrate its superior performance compared to prior arts, with a notable increase in mIoU by over 9%. Our source code will be publicly available at mias.group/TiCoSS upon publication.
Abstract:Unsupervised monocular depth estimation frameworks have shown promising performance in autonomous driving. However, existing solutions primarily rely on a simple convolutional neural network for ego-motion recovery, which struggles to estimate precise camera poses in dynamic, complicated real-world scenarios. These inaccurately estimated camera poses can inevitably deteriorate the photometric reconstruction and mislead the depth estimation networks with wrong supervisory signals. In this article, we introduce SCIPaD, a novel approach that incorporates spatial clues for unsupervised depth-pose joint learning. Specifically, a confidence-aware feature flow estimator is proposed to acquire 2D feature positional translations and their associated confidence levels. Meanwhile, we introduce a positional clue aggregator, which integrates pseudo 3D point clouds from DepthNet and 2D feature flows into homogeneous positional representations. Finally, a hierarchical positional embedding injector is proposed to selectively inject spatial clues into semantic features for robust camera pose decoding. Extensive experiments and analyses demonstrate the superior performance of our model compared to other state-of-the-art methods. Remarkably, SCIPaD achieves a reduction of 22.2\% in average translation error and 34.8\% in average angular error for camera pose estimation task on the KITTI Odometry dataset. Our source code is available at \url{https://mias.group/SCIPaD}.
Abstract:There has been a recent surge of interest in learning to perceive depth from monocular videos in an unsupervised fashion. A key challenge in this field is achieving robust and accurate depth estimation in challenging scenarios, particularly in regions with weak textures or where dynamic objects are present. This study makes three major contributions by delving deeply into dense correspondence priors to provide existing frameworks with explicit geometric constraints. The first novelty is a contextual-geometric depth consistency loss, which employs depth maps triangulated from dense correspondences based on estimated ego-motion to guide the learning of depth perception from contextual information, since explicitly triangulated depth maps capture accurate relative distances among pixels. The second novelty arises from the observation that there exists an explicit, deducible relationship between optical flow divergence and depth gradient. A differential property correlation loss is, therefore, designed to refine depth estimation with a specific emphasis on local variations. The third novelty is a bidirectional stream co-adjustment strategy that enhances the interaction between rigid and optical flows, encouraging the former towards more accurate correspondence and making the latter more adaptable across various scenarios under the static scene hypotheses. DCPI-Depth, a framework that incorporates all these innovative components and couples two bidirectional and collaborative streams, achieves state-of-the-art performance and generalizability across multiple public datasets, outperforming all existing prior arts. Specifically, it demonstrates accurate depth estimation in texture-less and dynamic regions, and shows more reasonable smoothness.
Abstract:Place recognition is the foundation for enabling autonomous systems to achieve independent decision-making and safe operations. It is also crucial in tasks such as loop closure detection and global localization within SLAM. Previous methods utilize mundane point cloud representations as input and deep learning-based LiDAR-based Place Recognition (LPR) approaches employing different point cloud image inputs with convolutional neural networks (CNNs) or transformer architectures. However, the recently proposed Mamba deep learning model, combined with state space models (SSMs), holds great potential for long sequence modeling. Therefore, we developed OverlapMamba, a novel network for place recognition, which represents input range views (RVs) as sequences. In a novel way, we employ a stochastic reconstruction approach to build shift state space models, compressing the visual representation. Evaluated on three different public datasets, our method effectively detects loop closures, showing robustness even when traversing previously visited locations from different directions. Relying on raw range view inputs, it outperforms typical LiDAR and multi-view combination methods in time complexity and speed, indicating strong place recognition capabilities and real-time efficiency.
Abstract:LiDAR-camera extrinsic calibration (LCEC) is crucial for data fusion in intelligent vehicles. Offline, target-based approaches have long been the preferred choice in this field. However, they often demonstrate poor adaptability to real-world environments. This is largely because extrinsic parameters may change significantly due to moderate shocks or during extended operations in environments with vibrations. In contrast, online, target-free approaches provide greater adaptability yet typically lack robustness, primarily due to the challenges in cross-modal feature matching. Therefore, in this article, we unleash the full potential of large vision models (LVMs), which are emerging as a significant trend in the fields of computer vision and robotics, especially for embodied artificial intelligence, to achieve robust and accurate online, target-free LCEC across a variety of challenging scenarios. Our main contributions are threefold: we introduce a novel framework known as MIAS-LCEC, provide an open-source versatile calibration toolbox with an interactive visualization interface, and publish three real-world datasets captured from various indoor and outdoor environments. The cornerstone of our framework and toolbox is the cross-modal mask matching (C3M) algorithm, developed based on a state-of-the-art (SoTA) LVM and capable of generating sufficient and reliable matches. Extensive experiments conducted on these real-world datasets demonstrate the robustness of our approach and its superior performance compared to SoTA methods, particularly for the solid-state LiDARs with super-wide fields of view.
Abstract:Stereo matching has become a key technique for 3D environment perception in intelligent vehicles. For a considerable time, convolutional neural networks (CNNs) have remained the mainstream choice for feature extraction in this domain. Nonetheless, there is a growing consensus that the existing paradigm should evolve towards vision foundation models (VFM), particularly those developed based on vision Transformers (ViTs) and pre-trained through self-supervision on extensive, unlabeled datasets. While VFMs are adept at extracting informative, general-purpose visual features, specifically for dense prediction tasks, their performance often lacks in geometric vision tasks. This study serves as the first exploration of a viable approach for adapting VFMs to stereo matching. Our ViT adapter, referred to as ViTAS, is constructed upon three types of modules: spatial differentiation, patch attention fusion, and cross-attention. The first module initializes feature pyramids, while the latter two aggregate stereo and multi-scale contextual information into fine-grained features, respectively. ViTAStereo, which combines ViTAS with cost volume-based stereo matching back-end processes, achieves the top rank on the KITTI Stereo 2012 dataset and outperforms the second-best network StereoBase by approximately 7.9% in terms of the percentage of error pixels, with a tolerance of 3 pixels. Additional experiments across diverse scenarios further demonstrate its superior generalizability compared to all other state-of-the-art approaches. We believe this new paradigm will pave the way for the next generation of stereo matching networks.
Abstract:Data-fusion networks have shown significant promise for RGB-thermal scene parsing. However, the majority of existing studies have relied on symmetric duplex encoders for heterogeneous feature extraction and fusion, paying inadequate attention to the inherent differences between RGB and thermal modalities. Recent progress in vision foundation models (VFMs) trained through self-supervision on vast amounts of unlabeled data has proven their ability to extract informative, general-purpose features. However, this potential has yet to be fully leveraged in the domain. In this study, we take one step toward this new research area by exploring a feasible strategy to fully exploit VFM features for RGB-thermal scene parsing. Specifically, we delve deeper into the unique characteristics of RGB and thermal modalities, thereby designing a hybrid, asymmetric encoder that incorporates both a VFM and a convolutional neural network. This design allows for more effective extraction of complementary heterogeneous features, which are subsequently fused in a dual-path, progressive manner. Moreover, we introduce an auxiliary task to further enrich the local semantics of the fused features, thereby improving the overall performance of RGB-thermal scene parsing. Our proposed HAPNet, equipped with all these components, demonstrates superior performance compared to all other state-of-the-art RGB-thermal scene parsing networks, achieving top ranks across three widely used public RGB-thermal scene parsing datasets. We believe this new paradigm has opened up new opportunities for future developments in data-fusion scene parsing approaches.
Abstract:Despite the impressive performance achieved by data-fusion networks with duplex encoders for visual semantic segmentation, they become ineffective when spatial geometric data are not available. Implicitly infusing the spatial geometric prior knowledge acquired by a duplex-encoder teacher model into a single-encoder student model is a practical, albeit less explored research avenue. This paper delves into this topic and resorts to knowledge distillation approaches to address this problem. We introduce the Learning to Infuse "X" (LIX) framework, with novel contributions in both logit distillation and feature distillation aspects. We present a mathematical proof that underscores the limitation of using a single fixed weight in decoupled knowledge distillation and introduce a logit-wise dynamic weight controller as a solution to this issue. Furthermore, we develop an adaptively-recalibrated feature distillation algorithm, including two technical novelties: feature recalibration via kernel regression and in-depth feature consistency quantification via centered kernel alignment. Extensive experiments conducted with intermediate-fusion and late-fusion networks across various public datasets provide both quantitative and qualitative evaluations, demonstrating the superior performance of our LIX framework when compared to other state-of-the-art approaches.