Abstract:Action recognition is a crucial task in artificial intelligence, with significant implications across various domains. We initially perform a comprehensive analysis of seven prominent action recognition methods across five widely-used datasets. This analysis reveals a critical, yet previously overlooked, observation: as the velocity of actions increases, the performance of these methods variably declines, undermining their robustness. This decline in performance poses significant challenges for their application in real-world scenarios. Building on these findings, we introduce the Velocity-Aware Action Recognition (VA-AR) framework to obtain robust action representations across different velocities. Our principal insight is that rapid actions (e.g., the giant circle backward in uneven bars or a smash in badminton) occur within short time intervals, necessitating smaller temporal attention windows to accurately capture intricate changes. Conversely, slower actions (e.g., drinking water or wiping face) require larger windows to effectively encompass the broader context. VA-AR employs a Mixture of Window Attention (MoWA) strategy, dynamically adjusting its attention window size based on the action's velocity. This adjustment enables VA-AR to obtain a velocity-aware representation, thereby enhancing the accuracy of action recognition. Extensive experiments confirm that VA-AR achieves state-of-the-art performance on the same five datasets, demonstrating VA-AR's effectiveness across a broad spectrum of action recognition scenarios.
Abstract:Artificial General Intelligence (AGI), widely regarded as the fundamental goal of artificial intelligence, represents the realization of cognitive capabilities that enable the handling of general tasks with human-like proficiency. Researchers in brain-inspired AI seek inspiration from the operational mechanisms of the human brain, aiming to replicate its functional rules in intelligent models. Moreover, with the rapid development of large-scale models in recent years, the concept of agents has garnered increasing attention, with researchers widely recognizing it as a necessary pathway toward achieving AGI. In this article, we propose the concept of a brain-inspired AI agent and analyze how to extract relatively feasible and agent-compatible cortical region functionalities and their associated functional connectivity networks from the complex mechanisms of the human brain. Implementing these structures within an agent enables it to achieve basic cognitive intelligence akin to human capabilities. Finally, we explore the limitations and challenges for realizing brain-inspired agents and discuss their future development.