College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, P. R. China, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Institute of Zhejiang University - Quzhou,P.R. China
Abstract:Offline model-based optimization (MBO) aims to identify a design that maximizes a black-box function using only a fixed, pre-collected dataset of designs and their corresponding scores. A common approach in offline MBO is to train a regression-based surrogate model by minimizing mean squared error (MSE) and then find the best design within this surrogate model by different optimizers (e.g., gradient ascent). However, a critical challenge is the risk of out-of-distribution errors, i.e., the surrogate model may typically overestimate the scores and mislead the optimizers into suboptimal regions. Prior works have attempted to address this issue in various ways, such as using regularization techniques and ensemble learning to enhance the robustness of the model, but it still remains. In this paper, we argue that regression models trained with MSE are not well-aligned with the primary goal of offline MBO, which is to select promising designs rather than to predict their scores precisely. Notably, if a surrogate model can maintain the order of candidate designs based on their relative score relationships, it can produce the best designs even without precise predictions. To validate it, we conduct experiments to compare the relationship between the quality of the final designs and MSE, finding that the correlation is really very weak. In contrast, a metric that measures order-maintaining quality shows a significantly stronger correlation. Based on this observation, we propose learning a ranking-based model that leverages learning to rank techniques to prioritize promising designs based on their relative scores. We show that the generalization error on ranking loss can be well bounded. Empirical results across diverse tasks demonstrate the superior performance of our proposed ranking-based models than twenty existing methods.
Abstract:Machine learning has increasingly been employed to solve NP-hard combinatorial optimization problems, resulting in the emergence of neural solvers that demonstrate remarkable performance, even with minimal domain-specific knowledge. To date, the community has created numerous open-source neural solvers with distinct motivations and inductive biases. While considerable efforts are devoted to designing powerful single solvers, our findings reveal that existing solvers typically demonstrate complementary performance across different problem instances. This suggests that significant improvements could be achieved through effective coordination of neural solvers at the instance level. In this work, we propose the first general framework to coordinate the neural solvers, which involves feature extraction, selection model, and selection strategy, aiming to allocate each instance to the most suitable solvers. To instantiate, we collect several typical neural solvers with state-of-the-art performance as alternatives, and explore various methods for each component of the framework. We evaluated our framework on two extensively studied combinatorial optimization problems, Traveling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP). Experimental results show that the proposed framework can effectively distribute instances and the resulting composite solver can achieve significantly better performance (e.g., reduce the optimality gap by 0.88\% on TSPLIB and 0.71\% on CVRPLIB) than the best individual neural solver with little extra time cost.
Abstract:This study addresses the deployment challenges of integer-only quantized Transformers on resource-constrained embedded FPGAs (Xilinx Spartan-7 XC7S15). We enhanced the flexibility of our VHDL template by introducing a selectable resource type for storing intermediate results across model layers, thereby breaking the deployment bottleneck by utilizing BRAM efficiently. Moreover, we developed a resource-aware mixed-precision quantization approach that enables researchers to explore hardware-level quantization strategies without requiring extensive expertise in Neural Architecture Search. This method provides accurate resource utilization estimates with a precision discrepancy as low as 3%, compared to actual deployment metrics. Compared to previous work, our approach has successfully facilitated the deployment of model configurations utilizing mixed-precision quantization, thus overcoming the limitations inherent in five previously non-deployable configurations with uniform quantization bitwidths. Consequently, this research enhances the applicability of Transformers in embedded systems, facilitating a broader range of Transformer-powered applications on edge devices.
Abstract:Executing flow estimation using Deep Learning (DL)-based soft sensors on resource-limited IoT devices has demonstrated promise in terms of reliability and energy efficiency. However, its application in the field of wastewater flow estimation remains underexplored due to: (1) a lack of available datasets, (2) inconvenient toolchains for on-device AI model development and deployment, and (3) hardware platforms designed for general DL purposes rather than being optimized for energy-efficient soft sensor applications. This study addresses these gaps by proposing an automated, end-to-end solution for wastewater flow estimation using a prototype IoT device.
Abstract:Evolutionary algorithms (EAs) have emerged as a predominant approach for addressing multi-objective optimization problems. However, the theoretical foundation of multi-objective EAs (MOEAs), particularly the fundamental aspects like running time analysis, remains largely underexplored. Existing theoretical studies mainly focus on basic MOEAs, with little attention given to practical MOEAs. In this paper, we present a running time analysis of strength Pareto evolutionary algorithm 2 (SPEA2) for the first time. Specifically, we prove that the expected running time of SPEA2 for solving three commonly used multi-objective problems, i.e., $m$OneMinMax, $m$LeadingOnesTrailingZeroes, and $m$-OneJumpZeroJump, is $O(\mu n\cdot \min\{m\log n, n\})$, $O(\mu n^2)$, and $O(\mu n^k \cdot \min\{mn, 3^{m/2}\})$, respectively. Here $m$ denotes the number of objectives, and the population size $\mu$ is required to be at least $(2n/m+1)^{m/2}$, $(2n/m+1)^{m-1}$ and $(2n/m-2k+3)^{m/2}$, respectively. The proofs are accomplished through general theorems which are also applicable for analyzing the expected running time of other MOEAs on these problems, and thus can be helpful for future theoretical analysis of MOEAs.
Abstract:Subset selection with cost constraints aims to select a subset from a ground set to maximize a monotone objective function without exceeding a given budget, which has various applications such as influence maximization and maximum coverage. In real-world scenarios, the budget, representing available resources, may change over time, which requires that algorithms must adapt quickly to new budgets. However, in this dynamic environment, previous algorithms either lack theoretical guarantees or require a long running time. The state-of-the-art algorithm, POMC, is a Pareto optimization approach designed for static problems, lacking consideration for dynamic problems. In this paper, we propose BPODC, enhancing POMC with biased selection and warm-up strategies tailored for dynamic environments. We focus on the ability of BPODC to leverage existing computational results while adapting to budget changes. We prove that BPODC can maintain the best known $(\alpha_f/2)(1-e^{-\alpha_f})$-approximation guarantee when the budget changes. Experiments on influence maximization and maximum coverage show that BPODC adapts more effectively and rapidly to budget changes, with a running time that is less than that of the static greedy algorithm.
Abstract:Network intrusion detection is one of the most important issues in the field of cyber security, and various machine learning techniques have been applied to build intrusion detection systems. However, since the number of features to describe the network connections is often large, where some features are redundant or noisy, feature selection is necessary in such scenarios, which can both improve the efficiency and accuracy. Recently, some researchers focus on using multi-objective evolutionary algorithms (MOEAs) to select features. But usually, they only consider the number of features and classification accuracy as the objectives, resulting in unsatisfactory performance on a critical metric, detection rate. This will lead to the missing of many real attacks and bring huge losses to the network system. In this paper, we propose DR-MOFS to model the feature selection problem in network intrusion detection as a three-objective optimization problem, where the number of features, accuracy and detection rate are optimized simultaneously, and use MOEAs to solve it. Experiments on two popular network intrusion detection datasets NSL-KDD and UNSW-NB15 show that in most cases the proposed method can outperform previous methods, i.e., lead to fewer features, higher accuracy and detection rate.
Abstract:Peptide vaccines are growing in significance for fighting diverse diseases. Machine learning has improved the identification of peptides that can trigger immune responses, and the main challenge of peptide vaccine design now lies in selecting an effective subset of peptides due to the allelic diversity among individuals. Previous works mainly formulated this task as a constrained optimization problem, aiming to maximize the expected number of peptide-Major Histocompatibility Complex (peptide-MHC) bindings across a broad range of populations by selecting a subset of diverse peptides with limited size; and employed a greedy algorithm, whose performance, however, may be limited due to the greedy nature. In this paper, we propose a new framework PVD-EMO based on Evolutionary Multi-objective Optimization, which reformulates Peptide Vaccine Design as a bi-objective optimization problem that maximizes the expected number of peptide-MHC bindings and minimizes the number of selected peptides simultaneously, and employs a Multi-Objective Evolutionary Algorithm (MOEA) to solve it. We also incorporate warm-start and repair strategies into MOEAs to improve efficiency and performance. We prove that the warm-start strategy ensures that PVD-EMO maintains the same worst-case approximation guarantee as the previous greedy algorithm, and meanwhile, the EMO framework can help avoid local optima. Experiments on a peptide vaccine design for COVID-19, caused by the SARS-CoV-2 virus, demonstrate the superiority of PVD-EMO.
Abstract:Selective classification enables models to make predictions only when they are sufficiently confident, aiming to enhance safety and reliability, which is important in high-stakes scenarios. Previous methods mainly use deep neural networks and focus on modifying the architecture of classification layers to enable the model to estimate the confidence of its prediction. This work provides a generalization bound for selective classification, disclosing that optimizing feature layers helps improve the performance of selective classification. Inspired by this theory, we propose to explicitly improve the selective classification model at the feature level for the first time, leading to a novel Confidence-aware Contrastive Learning method for Selective Classification, CCL-SC, which similarizes the features of homogeneous instances and differentiates the features of heterogeneous instances, with the strength controlled by the model's confidence. The experimental results on typical datasets, i.e., CIFAR-10, CIFAR-100, CelebA, and ImageNet, show that CCL-SC achieves significantly lower selective risk than state-of-the-art methods, across almost all coverage degrees. Moreover, it can be combined with existing methods to bring further improvement.
Abstract:Quality-Diversity (QD) algorithms have emerged as a powerful optimization paradigm with the aim of generating a set of high-quality and diverse solutions. To achieve such a challenging goal, QD algorithms require maintaining a large archive and a large population in each iteration, which brings two main issues, sample and resource efficiency. Most advanced QD algorithms focus on improving the sample efficiency, while the resource efficiency is overlooked to some extent. Particularly, the resource overhead during the training process has not been touched yet, hindering the wider application of QD algorithms. In this paper, we highlight this important research question, i.e., how to efficiently train QD algorithms with limited resources, and propose a novel and effective method called RefQD to address it. RefQD decomposes a neural network into representation and decision parts, and shares the representation part with all decision parts in the archive to reduce the resource overhead. It also employs a series of strategies to address the mismatch issue between the old decision parts and the newly updated representation part. Experiments on different types of tasks from small to large resource consumption demonstrate the excellent performance of RefQD: it not only uses significantly fewer resources (e.g., 16\% GPU memories on QDax and 3.7\% on Atari) but also achieves comparable or better performance compared to sample-efficient QD algorithms. Our code is available at \url{https://github.com/lamda-bbo/RefQD}.