Abstract:Placement is crucial in the physical design, as it greatly affects power, performance, and area metrics. Recent advancements in analytical methods, such as DREAMPlace, have demonstrated impressive performance in global placement. However, DREAMPlace has some limitations, e.g., may not guarantee legalizable placements under the same settings, leading to fragile and unpredictable results. This paper highlights the main issue as being stuck in local optima, and proposes a hybrid optimization framework to efficiently escape the local optima, by perturbing the placement result iteratively. The proposed framework achieves significant improvements compared to state-of-the-art methods on two popular benchmarks.
Abstract:The development of very large-scale integration (VLSI) technology has posed new challenges for electronic design automation (EDA) techniques in chip floorplanning. During this process, macro placement is an important subproblem, which tries to determine the positions of all macros with the aim of minimizing half-perimeter wirelength (HPWL) and avoiding overlapping. Previous methods include packing-based, analytical and reinforcement learning methods. In this paper, we propose a new black-box optimization (BBO) framework (called WireMask-BBO) for macro placement, by using a wire-mask-guided greedy procedure for objective evaluation. Equipped with different BBO algorithms, WireMask-BBO empirically achieves significant improvements over previous methods, i.e., achieves significantly shorter HPWL by using much less time. Furthermore, it can fine-tune existing placements by treating them as initial solutions, which can bring up to 50% improvement in HPWL. WireMask-BBO has the potential to significantly improve the quality and efficiency of chip floorplanning, which makes it appealing to researchers and practitioners in EDA and will also promote the application of BBO.