Abstract:Offline model-based optimization (MBO) aims to identify a design that maximizes a black-box function using only a fixed, pre-collected dataset of designs and their corresponding scores. A common approach in offline MBO is to train a regression-based surrogate model by minimizing mean squared error (MSE) and then find the best design within this surrogate model by different optimizers (e.g., gradient ascent). However, a critical challenge is the risk of out-of-distribution errors, i.e., the surrogate model may typically overestimate the scores and mislead the optimizers into suboptimal regions. Prior works have attempted to address this issue in various ways, such as using regularization techniques and ensemble learning to enhance the robustness of the model, but it still remains. In this paper, we argue that regression models trained with MSE are not well-aligned with the primary goal of offline MBO, which is to select promising designs rather than to predict their scores precisely. Notably, if a surrogate model can maintain the order of candidate designs based on their relative score relationships, it can produce the best designs even without precise predictions. To validate it, we conduct experiments to compare the relationship between the quality of the final designs and MSE, finding that the correlation is really very weak. In contrast, a metric that measures order-maintaining quality shows a significantly stronger correlation. Based on this observation, we propose learning a ranking-based model that leverages learning to rank techniques to prioritize promising designs based on their relative scores. We show that the generalization error on ranking loss can be well bounded. Empirical results across diverse tasks demonstrate the superior performance of our proposed ranking-based models than twenty existing methods.
Abstract:We find that at sequence length 512 padding tokens represent in excess of 50% of the Wikipedia dataset used for pretraining BERT (Bidirectional Encoder Representations from Transformers). Therefore by removing all padding we achieve a 2x speed-up in terms of sequences/sec. To exploit this characteristic of the dataset, we develop and contrast two deterministic packing algorithms. Both algorithms rely on the assumption that sequences are interchangeable and therefore packing can be performed on the histogram of sequence lengths, rather than per sample. This transformation of the problem leads to algorithms which are fast and have linear complexity in dataset size. The shortest-pack-first histogram-packing (SPFHP) algorithm determines the packing order for the Wikipedia dataset of over 16M sequences in 0.02 seconds. The non-negative least-squares histogram-packing (NNLSHP) algorithm converges in 28.4 seconds but produces solutions which are more depth efficient, managing to get near optimal packing by combining a maximum of 3 sequences in one sample. Using the dataset with multiple sequences per sample requires additional masking in the attention layer and a modification of the MLM loss function. We demonstrate that both of these changes are straightforward to implement and have relatively little impact on the achievable performance gain on modern hardware. Finally, we pretrain BERT-Large using the packed dataset, demonstrating no loss of convergence and the desired 2x speed-up.