Abstract:Our research introduces an innovative framework for video-to-audio synthesis, which solves the problems of audio-video desynchronization and semantic loss in the audio. By incorporating a semantic alignment adapter and a temporal synchronization adapter, our method significantly improves semantic integrity and the precision of beat point synchronization, particularly in fast-paced action sequences. Utilizing a contrastive audio-visual pre-trained encoder, our model is trained with video and high-quality audio data, improving the quality of the generated audio. This dual-adapter approach empowers users with enhanced control over audio semantics and beat effects, allowing the adjustment of the controller to achieve better results. Extensive experiments substantiate the effectiveness of our framework in achieving seamless audio-visual alignment.
Abstract:Traditional image-to-3D models often struggle with scenes containing multiple objects due to biases and occlusion complexities. To address this challenge, we present REPARO, a novel approach for compositional 3D asset generation from single images. REPARO employs a two-step process: first, it extracts individual objects from the scene and reconstructs their 3D meshes using off-the-shelf image-to-3D models; then, it optimizes the layout of these meshes through differentiable rendering techniques, ensuring coherent scene composition. By integrating optimal transport-based long-range appearance loss term and high-level semantic loss term in the differentiable rendering, REPARO can effectively recover the layout of 3D assets. The proposed method can significantly enhance object independence, detail accuracy, and overall scene coherence. Extensive evaluation of multi-object scenes demonstrates that our REPARO offers a comprehensive approach to address the complexities of multi-object 3D scene generation from single images.
Abstract:With the development of AI-Generated Content (AIGC), text-to-audio models are gaining widespread attention. However, it is challenging for these models to generate audio aligned with human preference due to the inherent information density of natural language and limited model understanding ability. To alleviate this issue, we formulate the BATON, a framework designed to enhance the alignment between generated audio and text prompt using human preference feedback. Our BATON comprises three key stages: Firstly, we curated a dataset containing both prompts and the corresponding generated audio, which was then annotated based on human feedback. Secondly, we introduced a reward model using the constructed dataset, which can mimic human preference by assigning rewards to input text-audio pairs. Finally, we employed the reward model to fine-tune an off-the-shelf text-to-audio model. The experiment results demonstrate that our BATON can significantly improve the generation quality of the original text-to-audio models, concerning audio integrity, temporal relationship, and alignment with human preference.