Aalto University, Finland
Abstract:The restoration of nonlinearly distorted audio signals, alongside the identification of the applied memoryless nonlinear operation, is studied. The paper focuses on the difficult but practically important case in which both the nonlinearity and the original input signal are unknown. The proposed method uses a generative diffusion model trained unconditionally on guitar or speech signals to jointly model and invert the nonlinear system at inference time. Both the memoryless nonlinear function model and the restored audio signal are obtained as output. Successful example case studies are presented including inversion of hard and soft clipping, digital quantization, half-wave rectification, and wavefolding nonlinearities. Our results suggest that, out of the nonlinear functions tested here, the cubic Catmull-Rom spline is best suited to approximating these nonlinearities. In the case of guitar recordings, comparisons with informed and supervised methods show that the proposed blind method is at least as good as they are in terms of objective metrics. Experiments on distorted speech show that the proposed blind method outperforms general-purpose speech enhancement techniques and restores the original voice quality. The proposed method can be applied to audio effects modeling, restoration of music and speech recordings, and characterization of analog recording media.
Abstract:This paper introduces Open-Amp, a synthetic data framework for generating large-scale and diverse audio effects data. Audio effects are relevant to many musical audio processing and Music Information Retrieval (MIR) tasks, such as modelling of analog audio effects, automatic mixing, tone matching and transcription. Existing audio effects datasets are limited in scope, usually including relatively few audio effects processors and a limited amount of input audio signals. Our proposed framework overcomes these issues, by crowdsourcing neural network emulations of guitar amplifiers and effects, created by users of open-source audio effects emulation software. This allows users of Open-Amp complete control over the input signals to be processed by the effects models, as well as providing high-quality emulations of hundreds of devices. Open-Amp can render audio online during training, allowing great flexibility in data augmentation. Our experiments show that using Open-Amp to train a guitar effects encoder achieves new state-of-the-art results on multiple guitar effects classification tasks. Furthermore, we train a one-to-many guitar effects model using Open-Amp, and use it to emulate unseen analog effects via manipulation of its learned latent space, indicating transferability to analog guitar effects data.
Abstract:This paper describes a data-driven approach to creating real-time neural network models of guitar amplifiers, recreating the amplifiers' sonic response to arbitrary inputs at the full range of controls present on the physical device. While the focus on the paper is on the data collection pipeline, we demonstrate the effectiveness of this conditioned black-box approach by training an LSTM model to the task, and comparing its performance to an offline white-box SPICE circuit simulation. Our listening test results demonstrate that the neural amplifier modeling approach can match the subjective performance of a high-quality SPICE model, all while using an automated, non-intrusive data collection process, and an end-to-end trainable, real-time feasible neural network model.
Abstract:Advances in neural speech synthesis have brought us technology that is not only close to human naturalness, but is also capable of instant voice cloning with little data, and is highly accessible with pre-trained models available. Naturally, the potential flood of generated content raises the need for synthetic speech detection and watermarking. Recently, considerable research effort in synthetic speech detection has been related to the Automatic Speaker Verification and Spoofing Countermeasure Challenge (ASVspoof), which focuses on passive countermeasures. This paper takes a complementary view to generated speech detection: a synthesis system should make an active effort to watermark the generated speech in a way that aids detection by another machine, but remains transparent to a human listener. We propose a collaborative training scheme for synthetic speech watermarking and show that a HiFi-GAN neural vocoder collaborating with the ASVspoof 2021 baseline countermeasure models consistently improves detection performance over conventional classifier training. Furthermore, we demonstrate how collaborative training can be paired with augmentation strategies for added robustness against noise and time-stretching. Finally, listening tests demonstrate that collaborative training has little adverse effect on perceptual quality of vocoded speech.
Abstract:We explore the use of neural synthesis for acoustic guitar from string-wise MIDI input. We propose four different systems and compare them with both objective metrics and subjective evaluation against natural audio and a sample-based baseline. We iteratively develop these four systems by making various considerations on the architecture and intermediate tasks, such as predicting pitch and loudness control features. We find that formulating the control feature prediction task as a classification task rather than a regression task yields better results. Furthermore, we find that our simplest proposed system, which directly predicts synthesis parameters from MIDI input performs the best out of the four proposed systems. Audio examples are available at https://erl-j.github.io/neural-guitar-web-supplement.
Abstract:We describe speaker-independent speech synthesis driven by a small set of phonetically meaningful speech parameters such as formant frequencies. The intention is to leverage deep-learning advances to provide a highly realistic signal generator that includes control affordances required for stimulus creation in the speech sciences. Our approach turns input speech parameters into predicted mel-spectrograms, which are rendered into waveforms by a pre-trained neural vocoder. Experiments with WaveNet and HiFi-GAN confirm that the method achieves our goals of accurate control over speech parameters combined with high perceptual audio quality. We also find that the small set of phonetically relevant speech parameters we use is sufficient to allow for speaker-independent synthesis (a.k.a. universal vocoding).
Abstract:We propose an audio effects processing framework that learns to emulate a target electric guitar tone from a recording. We train a deep neural network using an adversarial approach, with the goal of transforming the timbre of a guitar, into the timbre of another guitar after audio effects processing has been applied, for example, by a guitar amplifier. The model training requires no paired data, and the resulting model emulates the target timbre well whilst being capable of real-time processing on a modern personal computer. To verify our approach we present two experiments, one which carries out unpaired training using paired data, allowing us to monitor training via objective metrics, and another that uses fully unpaired data, corresponding to a realistic scenario where a user wants to emulate a guitar timbre only using audio data from a recording. Our listening test results confirm that the models are perceptually convincing.
Abstract:Recent neural waveform synthesizers such as WaveNet, WaveGlow, and the neural-source-filter (NSF) model have shown good performance in speech synthesis despite their different methods of waveform generation. The similarity between speech and music audio synthesis techniques suggests interesting avenues to explore in terms of the best way to apply speech synthesizers in the music domain. This work compares three neural synthesizers used for musical instrument sounds generation under three scenarios: training from scratch on music data, zero-shot learning from the speech domain, and fine-tuning-based adaptation from the speech to the music domain. The results of a large-scale perceptual test demonstrated that the performance of three synthesizers improved when they were pre-trained on speech data and fine-tuned on music data, which indicates the usefulness of knowledge from speech data for music audio generation. Among the synthesizers, WaveGlow showed the best potential in zero-shot learning while NSF performed best in the other scenarios and could generate samples that were perceptually close to natural audio.
Abstract:Recent advances in neural network -based text-to-speech have reached human level naturalness in synthetic speech. The present sequence-to-sequence models can directly map text to mel-spectrogram acoustic features, which are convenient for modeling, but present additional challenges for vocoding (i.e., waveform generation from the acoustic features). High-quality synthesis can be achieved with neural vocoders, such as WaveNet, but such autoregressive models suffer from slow sequential inference. Meanwhile, their existing parallel inference counterparts are difficult to train and require increasingly large model sizes. In this paper, we propose an alternative training strategy for a parallel neural vocoder utilizing generative adversarial networks, and integrate a linear predictive synthesis filter into the model. Results show that the proposed model achieves significant improvement in inference speed, while outperforming a WaveNet in copy-synthesis quality.
Abstract:Recent studies have shown that text-to-speech synthesis quality can be improved by using glottal vocoding. This refers to vocoders that parameterize speech into two parts, the glottal excitation and vocal tract, that occur in the human speech production apparatus. Current glottal vocoders generate the glottal excitation waveform by using deep neural networks (DNNs). However, the squared error-based training of the present glottal excitation models is limited to generating conditional average waveforms, which fails to capture the stochastic variation of the waveforms. As a result, shaped noise is added as post-processing. In this study, we propose a new method for predicting glottal waveforms by generative adversarial networks (GANs). GANs are generative models that aim to embed the data distribution in a latent space, enabling generation of new instances very similar to the original by randomly sampling the latent distribution. The glottal pulses generated by GANs show a stochastic component similar to natural glottal pulses. In our experiments, we compare synthetic speech generated using glottal waveforms produced by both DNNs and GANs. The results show that the newly proposed GANs achieve synthesis quality comparable to that of widely-used DNNs, without using an additive noise component.