Abstract:Rapid industrial digitalization has created intricate cybersecurity demands that necessitate effective validation methods. While cyber ranges and simulation platforms are widely deployed, they frequently face limitations in scenario diversity and creation efficiency. In this paper, we present SpiderSim, a theoretical cybersecurity simulation platform enabling rapid and lightweight scenario generation for industrial digitalization security research. At its core, our platform introduces three key innovations: a structured framework for unified scenario modeling, a multi-agent collaboration mechanism for automated generation, and modular atomic security capabilities for flexible scenario composition. Extensive implementation trials across multiple industrial digitalization contexts, including marine ranch monitoring systems, validate our platform's capacity for broad scenario coverage with efficient generation processes. Built on solid theoretical foundations and released as open-source software, SpiderSim facilitates broader research and development in automated security testing for industrial digitalization.