Abstract:Machine learning models assume that training and test samples are drawn from the same distribution. As such, significant differences between training and test distributions often lead to degradations in performance. We introduce Multiple Distribution Shift -- Aerial (MDS-A) -- a collection of inter-related datasets of the same aerial domain that are perturbed in different ways to better characterize the effects of out-of-distribution performance. Specifically, MDS-A is a set of simulated aerial datasets collected under different weather conditions. We include six datasets under different simulated weather conditions along with six baseline object-detection models, as well as several test datasets that are a mix of weather conditions that we show have significant differences from the training data. In this paper, we present characterizations of MDS-A, provide performance results for the baseline machine learning models (on both their specific training datasets and the test data), as well as results of the baselines after employing recent knowledge-engineering error-detection techniques (EDR) thought to improve out-of-distribution performance. The dataset is available at https://lab-v2.github.io/mdsa-dataset-website.
Abstract:Deep Reinforcement Learning (RL) has been explored and verified to be effective in solving decision-making tasks in various domains, such as robotics, transportation, recommender systems, etc. It learns from the interaction with environments and updates the policy using the collected experience. However, due to the limited real-world data and unbearable consequences of taking detrimental actions, the learning of RL policy is mainly restricted within the simulators. This practice guarantees safety in learning but introduces an inevitable sim-to-real gap in terms of deployment, thus causing degraded performance and risks in execution. There are attempts to solve the sim-to-real problems from different domains with various techniques, especially in the era with emerging techniques such as large foundations or language models that have cast light on the sim-to-real. This survey paper, to the best of our knowledge, is the first taxonomy that formally frames the sim-to-real techniques from key elements of the Markov Decision Process (State, Action, Transition, and Reward). Based on the framework, we cover comprehensive literature from the classic to the most advanced methods including the sim-to-real techniques empowered by foundation models, and we also discuss the specialties that are worth attention in different domains of sim-to-real problems. Then we summarize the formal evaluation process of sim-to-real performance with accessible code or benchmarks. The challenges and opportunities are also presented to encourage future exploration of this direction. We are actively maintaining a to include the most up-to-date sim-to-real research outcomes to help the researchers in their work.
Abstract:In this paper, we study the problem of visual question answering (VQA) where the image and query are represented by ASP programs that lack domain data. We provide an approach that is orthogonal and complementary to existing knowledge augmentation techniques where we abduce domain relationships of image constructs from past examples. After framing the abduction problem, we provide a baseline approach, and an implementation that significantly improves the accuracy of query answering yet requires few examples.
Abstract:Metacognition is the concept of reasoning about an agent's own internal processes, and it has recently received renewed attention with respect to artificial intelligence (AI) and, more specifically, machine learning systems. This paper reviews a hybrid-AI approach known as "error detecting and correcting rules" (EDCR) that allows for the learning of rules to correct perceptual (e.g., neural) models. Additionally, we introduce a probabilistic framework that adds rigor to prior empirical studies, and we use this framework to prove results on necessary and sufficient conditions for metacognitive improvement, as well as limits to the approach. A set of future
Abstract:Bad actors in the maritime industry engage in illegal behaviors after disabling their vessel's automatic identification system (AIS) - which makes finding such vessels difficult for analysts. Machine learning approaches only succeed in identifying the locations of these ``dark vessels'' in the immediate future. This work leverages ideas from the literature on abductive inference applied to locating adversarial agents to solve the problem. Specifically, we combine concepts from abduction, logic programming, and rule learning to create an efficient method that approaches full recall of dark vessels while requiring less search area than machine learning methods. We provide a logic-based paradigm for reasoning about maritime vessels, an abductive inference query method, an automatically extracted rule-based behavior model methodology, and a thorough suite of experiments.
Abstract:Predicting price spikes in critical metals such as Cobalt, Copper, Magnesium, and Nickel is crucial for mitigating economic risks associated with global trends like the energy transition and reshoring of manufacturing. While traditional models have focused on regression-based approaches, our work introduces a neurosymbolic ensemble framework that integrates multiple neural models with symbolic error detection and correction rules. This framework is designed to enhance predictive accuracy by correcting individual model errors and offering interpretability through rule-based explanations. We show that our method provides up to 6.42% improvement in precision, 29.41% increase in recall at 13.24% increase in F1 over the best performing neural models. Further, our method, as it is based on logical rules, has the benefit of affording an explanation as to which combination of neural models directly contribute to a given prediction.
Abstract:Recent advances in Hierarchical Multi-label Classification (HMC), particularly neurosymbolic-based approaches, have demonstrated improved consistency and accuracy by enforcing constraints on a neural model during training. However, such work assumes the existence of such constraints a-priori. In this paper, we relax this strong assumption and present an approach based on Error Detection Rules (EDR) that allow for learning explainable rules about the failure modes of machine learning models. We show that these rules are not only effective in detecting when a machine learning classifier has made an error but also can be leveraged as constraints for HMC, thereby allowing the recovery of explainable constraints even if they are not provided. We show that our approach is effective in detecting machine learning errors and recovering constraints, is noise tolerant, and can function as a source of knowledge for neurosymbolic models on multiple datasets, including a newly introduced military vehicle recognition dataset.
Abstract:The ability to generate artificial human movement patterns while meeting location and time constraints is an important problem in the security community, particularly as it enables the study of the analog problem of detecting such patterns while maintaining privacy. We frame this problem as an instance of abduction guided by a novel parsimony function represented as an aggregate truth value over an annotated logic program. This approach has the added benefit of affording explainability to an analyst user. By showing that any subset of such a program can provide a lower bound on this parsimony requirement, we are able to abduce movement trajectories efficiently through an informed (i.e., A*) search. We describe how our implementation was enhanced with the application of multiple techniques in order to be scaled and integrated with a cloud-based software stack that included bottom-up rule learning, geolocated knowledge graph retrieval/management, and interfaces with government systems for independently conducted government-run tests for which we provide results. We also report on our own experiments showing that we not only provide exact results but also scale to very large scenarios and provide realistic agent trajectories that can go undetected by machine learning anomaly detectors.
Abstract:Metacognition is the concept of reasoning about an agent's own internal processes and was originally introduced in the field of developmental psychology. In this position paper, we examine the concept of applying metacognition to artificial intelligence. We introduce a framework for understanding metacognitive artificial intelligence (AI) that we call TRAP: transparency, reasoning, adaptation, and perception. We discuss each of these aspects in-turn and explore how neurosymbolic AI (NSAI) can be leveraged to address challenges of metacognition.
Abstract:Recent advances in experimental methods have enabled researchers to collect data on thousands of analytes simultaneously. This has led to correlational studies that associated molecular measurements with diseases such as Alzheimer's, Liver, and Gastric Cancer. However, the use of thousands of biomarkers selected from the analytes is not practical for real-world medical diagnosis and is likely undesirable due to potentially formed spurious correlations. In this study, we evaluate 4 different methods for biomarker selection and 4 different machine learning (ML) classifiers for identifying correlations, evaluating 16 approaches in all. We found that contemporary methods outperform previously reported logistic regression in cases where 3 and 10 biomarkers are permitted. When specificity is fixed at 0.9, ML approaches produced a sensitivity of 0.240 (3 biomarkers) and 0.520 (10 biomarkers), while standard logistic regression provided a sensitivity of 0.000 (3 biomarkers) and 0.040 (10 biomarkers). We also noted that causal-based methods for biomarker selection proved to be the most performant when fewer biomarkers were permitted, while univariate feature selection was the most performant when a greater number of biomarkers were permitted.